Publicação: A new parallel training algorithm for optimum-path forest-based learning
dc.contributor.author | Culquicondor, Aldo | |
dc.contributor.author | Castelo-Fernández, César | |
dc.contributor.author | Papa, João Paulo [UNESP] | |
dc.contributor.institution | Universidad Catolica San Pablo | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-12-11T17:31:31Z | |
dc.date.available | 2018-12-11T17:31:31Z | |
dc.date.issued | 2017-01-01 | |
dc.description.abstract | In this work, we present a new parallel-driven approach to speed up Optimum-Path Forest (OPF) training phase. In addition, we show how to make OPF up to five times faster for training using a simple parallel-friendly data structure, which can achieve the same accuracy results to the ones obtained by traditional OPF. To the best of our knowledge, we have not observed any work that attempted at parallelizing OPF to date, which turns out to be the main contribution of this paper. The experiments are carried out in four public datasets, showing the proposed approach maintains the trade-off between efficiency and effectiveness. | en |
dc.description.affiliation | Escuela de Ciencia de la Computacion Universidad Catolica San Pablo | |
dc.description.affiliation | Computer Science Department Sao Paulo State University - UNESP | |
dc.description.affiliationUnesp | Computer Science Department Sao Paulo State University - UNESP | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: #2014/16250-9 | |
dc.description.sponsorshipId | CNPq: #306166/2014-3 | |
dc.description.sponsorshipId | CNPq: #470571/2013-6 | |
dc.format.extent | 192-199 | |
dc.identifier | http://dx.doi.org/10.1007/978-3-319-52277-7_24 | |
dc.identifier.citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10125 LNCS, p. 192-199. | |
dc.identifier.doi | 10.1007/978-3-319-52277-7_24 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.scopus | 2-s2.0-85013418925 | |
dc.identifier.uri | http://hdl.handle.net/11449/178659 | |
dc.language.iso | eng | |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.relation.ispartofsjr | 0,295 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Graph algorithms | |
dc.subject | Optimum-path forest | |
dc.subject | Parallel algorithms | |
dc.title | A new parallel training algorithm for optimum-path forest-based learning | en |
dc.type | Trabalho apresentado em evento | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |