Repository logo
 

Publication:
Controlling entropic uncertainty bound through memory effects

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Type

Article

Access right

Acesso abertoAcesso Aberto

Abstract

One of the defining traits of quantum mechanics is the uncertainty principle which was originally expressed in terms of the standard deviation of two observables. Alternatively, it can be formulated using entropic measures, and can also be generalized by including a memory particle that is entangled with the particle to be measured. Here we consider a realistic scenario where the memory particle is an open system interacting with an external environment. Through the relation of conditional entropy to mutual information, we provide a link between memory effects and the rate of change of conditional entropy controlling the lower bound of the entropic uncertainty relation. Our treatment reveals that the memory effects stemming from the non-Markovian nature of quantum dynamical maps directly control the lower bound of the entropic uncertainty relation in a general way, independently of the specific type of interaction between the memory particle and its environment.

Description

Keywords

Language

English

Citation

EPL, v. 111, n. 5, 2015.

Related itens

Units

Departments

Undergraduate courses

Graduate programs