Logotipo do repositório
 

Publicação:
Edge-driven nanomembrane-based vertical organic transistors showing a multi-sensing capability

dc.contributor.authorNawaz, Ali
dc.contributor.authorMerces, Leandro
dc.contributor.authorde Andrade, Denise M.
dc.contributor.authorde Camargo, Davi H. S. [UNESP]
dc.contributor.authorBof Bufon, Carlos C. [UNESP]
dc.contributor.institutionBrazilian Center for Research in Energy and Materials (CNPEM)
dc.contributor.institutionUniversidade Estadual de Ponta Grossa (UEPG)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T01:14:53Z
dc.date.available2020-12-12T01:14:53Z
dc.date.issued2020-12-01
dc.description.abstractThe effective utilization of vertical organic transistors in high current density applications demands further reduction of channel length (given by the thickness of the organic semiconducting layer and typically reported in the 100 nm range) along with the optimization of the source electrode structure. Here we present a viable solution by applying rolled-up metallic nanomembranes as the drain-electrode (which enables the incorporation of few nanometer-thick semiconductor layers) and by lithographically patterning the source-electrode. Our vertical organic transistors operate at ultra-low voltages and demonstrate high current densities (~0.5 A cm−2) that are found to depend directly on the number of source edges, provided the source perforation gap is wider than 250 nm. We anticipate that further optimization of device structure can yield higher current densities (~10 A cm−2). The use of rolled-up drain-electrode also enables sensing of humidity and light which highlights the potential of these devices to advance next-generation sensing technologies.en
dc.description.affiliationBrazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM)
dc.description.affiliationDepartment of Materials Engineering Ponta Grossa State University (UEPG)
dc.description.affiliationPostgraduate Program in Materials Science and Technology (POSMAT) São Paulo State University (UNESP)
dc.description.affiliationUnespPostgraduate Program in Materials Science and Technology (POSMAT) São Paulo State University (UNESP)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 14/25979-2
dc.description.sponsorshipIdFAPESP: 14/50906-9
dc.description.sponsorshipIdFAPESP: 18/18136-0
dc.description.sponsorshipIdCNPq: 408770/2018-0
dc.description.sponsorshipIdCNPq: 465452/2014-0
dc.identifierhttp://dx.doi.org/10.1038/s41467-020-14661-x
dc.identifier.citationNature Communications, v. 11, n. 1, 2020.
dc.identifier.doi10.1038/s41467-020-14661-x
dc.identifier.issn2041-1723
dc.identifier.scopus2-s2.0-85079338949
dc.identifier.urihttp://hdl.handle.net/11449/198512
dc.language.isoeng
dc.relation.ispartofNature Communications
dc.sourceScopus
dc.titleEdge-driven nanomembrane-based vertical organic transistors showing a multi-sensing capabilityen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0001-5376-861X[1]
unesp.author.orcid0000-0002-6202-9824[2]
unesp.author.orcid0000-0002-1493-8118[5]

Arquivos

Coleções