Logotipo do repositório
 

Publicação:
Video Segmentation Learning Using Cascade Residual Convolutional Neural Network

dc.contributor.authorSantos, Daniel F. S. [UNESP]
dc.contributor.authorPires, Rafael G. [UNESP]
dc.contributor.authorColombo, Danilo
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionPetr Brasileiro SA Petrobras
dc.date.accessioned2020-12-10T19:54:08Z
dc.date.available2020-12-10T19:54:08Z
dc.date.issued2019-01-01
dc.description.abstractVideo segmentation consists of a frame-by-frame selection process of meaningful areas related to foreground moving objects. Some applications include traffic monitoring, human tracking, action recognition, efficient video surveillance, and anomaly detection. In these applications, it is not rare to face challenges such as abrupt changes in weather conditions, illumination issues, shadows, subtle dynamic background motions, and also camouflage effects. In this work, we address such shortcomings by proposing a novel deep learning video segmentation approach that incorporates residual information into the foreground detection learning process. The main goal is to provide a method capable of generating an accurate foreground detection given a grayscale video. Experiments conducted on the Change Detection 2014 and on the private dataset PetrobrasROUTES from Petrobras support the effectiveness of the proposed approach concerning some state-of-the-art video segmentation techniques, with overall F-measures of 0.9535 and 0.9636 in the Change Detection 2014 and PetrobrasROUTES datasets, respectively. Such a result places the proposed technique amongst the top 3 state-of-the-art video segmentation methods, besides comprising approximately seven times less parameters than its top one counterpart.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationPetr Brasileiro SA Petrobras, Cenpes, Rio De Janeiro, RJ, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipPetrobras grant
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdCNPq: 427968/2018-6
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdPetrobras grant: 2017/00285-6
dc.format.extent1-7
dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI.2019.00009
dc.identifier.citation2019 32nd Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 1-7, 2019.
dc.identifier.doi10.1109/SIBGRAPI.2019.00009
dc.identifier.issn1530-1834
dc.identifier.urihttp://hdl.handle.net/11449/196721
dc.identifier.wosWOS:000521826400001
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2019 32nd Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)
dc.sourceWeb of Science
dc.subjectVideo Segmentation
dc.subjectDeep Learning
dc.subjectForeground Object Detection
dc.subjectResidual Map
dc.titleVideo Segmentation Learning Using Cascade Residual Convolutional Neural Networken
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos