Logotipo do repositório
 

Publicação:
A scale-space approach for multiscale shape analysis

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Currently, given the widespread of computers through society, the task of recognizing visual patterns is being more and more automated, in particular to treat the large and growing amount of digital images available. Two well-referenced shape descriptors are BAS (Beam Angle Statistics) and MFD (Multiscale Fractal Dimension). Results obtained by these shape descriptors on public image databases have shown high accuracy levels, better than many other traditional shape descriptors proposed in the literature. As scale is a key parameter in Computer Vision and approaches based on this concept can be quite successful, in this paper we explore the possibilities of a scale-space representation of BAS and MFD and propose two new shape descriptors SBAS (Scale-Space BAS) and SMFD (Scale-Space MFD). Both new scale-space based descriptors were evaluated on two public shape databases and their performances were compared with main shape descriptors found in the literature, showing better accuracy results in most of the comparisons.

Descrição

Palavras-chave

BAS, Image analysis, MFD, Multiscale, Scale-space, Shape analysis

Idioma

Inglês

Como citar

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 542-549.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação