UAV imagery data and machine learning: a driving merger for predictive analysis of qualitative yield in sugarcane
| dc.contributor.author | Barbosa Júnior, Marcelo Rodrigues [UNESP] | |
| dc.contributor.author | Moreira, Bruno Rafael de Almeida [UNESP] | |
| dc.contributor.author | Oliveira, Romário Porto de [UNESP] | |
| dc.contributor.author | Shiratsuchi, Luciano Shozo | |
| dc.contributor.author | Silva, Rouverson Pereira [UNESP] | |
| dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
| dc.date.accessioned | 2023-03-27T17:02:04Z | |
| dc.date.available | 2023-03-27T17:02:04Z | |
| dc.date.issued | 2023-01-26 | |
| dc.description.abstract | Predicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on the field; hence, it can streamline workflow while leveling up the cost-effectiveness of full-scale production. °Brix and Purity can offer significant and reliable indicators of high-quality raw material for industrial processing for food and fuel. However, their analysis in a relevant laboratory can be costly, time-consuming, and not scalable. We, therefore, analyzed whether merging multispectral images and machine learning (ML) algorithms can develop a non-invasive, predictive framework to map canopy reflectance to °Brix and Purity. We acquired multispectral images data of a sugarcane-producing area via unmanned aerial vehicle (UAV) while determining °Brix and analytical Purity from juice in a routine laboratory. We then tested a suite of ML algorithms, namely multiple linear regression (MLR), random forest (RF), decision tree (DT), and support vector machine (SVM) for adequacy and complexity in predicting °Brix and Purity upon single spectral bands, vegetation indices (VIs), and growing degree days (GDD). We obtained evidence for biophysical functions accurately predicting °Brix and Purity. Those can bring at least 80% of adequacy to the modeling. Therefore, our study represents progress in assessing and monitoring sugarcane on an industrial scale. Our insights can offer stakeholders possibilities to develop prescriptive harvesting and resource-effective, high-performance manufacturing lines for by-products. | en |
| dc.description.affiliation | Universidade Estadual Paulista (Unesp) | |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.description.sponsorshipId | CAPES: 001 | |
| dc.description.version | Versão final do editor | pt |
| dc.identifier.citation | Frontiers in Plant Science, v. 14, 2023. | |
| dc.identifier.doi | 10.3389/fpls.2023.1114852 | |
| dc.identifier.issn | 1664-462X | |
| dc.identifier.lattes | 7949757920964231 | |
| dc.identifier.lattes | 0561949994685915 | |
| dc.identifier.lattes | 4846711655204294 | |
| dc.identifier.lattes | 9191958474681192 | |
| dc.identifier.lattes | 8183357481929077 | |
| dc.identifier.orcid | 0000-0002-7207-2156 | |
| dc.identifier.orcid | 0000-0002-8686-4082 | |
| dc.identifier.orcid | 0000-0001-5458-9082 | |
| dc.identifier.orcid | 0000-0002-1986-6432 | |
| dc.identifier.orcid | 0000-0001-8852-2548 | |
| dc.identifier.uri | http://hdl.handle.net/11449/242674 | |
| dc.language.iso | eng | |
| dc.publisher | Frontiers Media | |
| dc.relation.ispartof | Frontiers in Plant Science | en |
| dc.rights.accessRights | Acesso aberto | pt |
| dc.subject | Remote sensing | en |
| dc.subject | Sugarcane | en |
| dc.subject | Ripening | en |
| dc.title | UAV imagery data and machine learning: a driving merger for predictive analysis of qualitative yield in sugarcane | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | 3d807254-e442-45e5-a80b-0f6bf3a26e48 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 3d807254-e442-45e5-a80b-0f6bf3a26e48 | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal | pt |
| unesp.department | Engenharia Rural - FCAV | pt |
Arquivos
Licença do pacote
1 - 1 de 1
Carregando...
- Nome:
- license.txt
- Tamanho:
- 2.26 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição:
