Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

UAV imagery data and machine learning: a driving merger for predictive analysis of qualitative yield in sugarcane

dc.contributor.authorBarbosa Júnior, Marcelo Rodrigues [UNESP]
dc.contributor.authorMoreira, Bruno Rafael de Almeida [UNESP]
dc.contributor.authorOliveira, Romário Porto de [UNESP]
dc.contributor.authorShiratsuchi, Luciano Shozo
dc.contributor.authorSilva, Rouverson Pereira [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2023-03-27T17:02:04Z
dc.date.available2023-03-27T17:02:04Z
dc.date.issued2023-01-26
dc.description.abstractPredicting sugarcane yield by quality allows stakeholders from research centers to industries to decide on the precise time and place to harvest a product on the field; hence, it can streamline workflow while leveling up the cost-effectiveness of full-scale production. °Brix and Purity can offer significant and reliable indicators of high-quality raw material for industrial processing for food and fuel. However, their analysis in a relevant laboratory can be costly, time-consuming, and not scalable. We, therefore, analyzed whether merging multispectral images and machine learning (ML) algorithms can develop a non-invasive, predictive framework to map canopy reflectance to °Brix and Purity. We acquired multispectral images data of a sugarcane-producing area via unmanned aerial vehicle (UAV) while determining °Brix and analytical Purity from juice in a routine laboratory. We then tested a suite of ML algorithms, namely multiple linear regression (MLR), random forest (RF), decision tree (DT), and support vector machine (SVM) for adequacy and complexity in predicting °Brix and Purity upon single spectral bands, vegetation indices (VIs), and growing degree days (GDD). We obtained evidence for biophysical functions accurately predicting °Brix and Purity. Those can bring at least 80% of adequacy to the modeling. Therefore, our study represents progress in assessing and monitoring sugarcane on an industrial scale. Our insights can offer stakeholders possibilities to develop prescriptive harvesting and resource-effective, high-performance manufacturing lines for by-products.en
dc.description.affiliationUniversidade Estadual Paulista (Unesp)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCAPES: 001
dc.description.versionVersão final do editorpt
dc.identifier.citationFrontiers in Plant Science, v. 14, 2023.
dc.identifier.doi10.3389/fpls.2023.1114852
dc.identifier.issn1664-462X
dc.identifier.lattes7949757920964231
dc.identifier.lattes0561949994685915
dc.identifier.lattes4846711655204294
dc.identifier.lattes9191958474681192
dc.identifier.lattes8183357481929077
dc.identifier.orcid0000-0002-7207-2156
dc.identifier.orcid0000-0002-8686-4082
dc.identifier.orcid0000-0001-5458-9082
dc.identifier.orcid0000-0002-1986-6432
dc.identifier.orcid0000-0001-8852-2548
dc.identifier.urihttp://hdl.handle.net/11449/242674
dc.language.isoeng
dc.publisherFrontiers Media
dc.relation.ispartofFrontiers in Plant Scienceen
dc.rights.accessRightsAcesso abertopt
dc.subjectRemote sensingen
dc.subjectSugarcaneen
dc.subjectRipeningen
dc.titleUAV imagery data and machine learning: a driving merger for predictive analysis of qualitative yield in sugarcaneen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublication3d807254-e442-45e5-a80b-0f6bf3a26e48
relation.isOrgUnitOfPublication.latestForDiscovery3d807254-e442-45e5-a80b-0f6bf3a26e48
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabalpt
unesp.departmentEngenharia Rural - FCAVpt

Arquivos

Pacote original

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
barbosajunior_mr_versaoeditor_jabo_uav.pdf
Tamanho:
10.8 MB
Formato:
Adobe Portable Document Format
Carregando...
Imagem de Miniatura
Nome:
barbosajunior_mr_versaoeditor_jabo_supplementary.pdf
Tamanho:
73.34 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.26 KB
Formato:
Item-specific license agreed upon to submission
Descrição: