Publicação: A block-based Markov random field model estimation for contextual classification using Optimum-Path Forest
dc.contributor.author | Osaku, Daniel | |
dc.contributor.author | Levada, Alexandre L.M. | |
dc.contributor.author | Papa, Joao Paulo [UNESP] | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2022-05-02T20:23:59Z | |
dc.date.available | 2022-05-02T20:23:59Z | |
dc.date.issued | 2016-07-29 | |
dc.description.abstract | Contextual image classification aims at considering the information about nearby samples in the learning process in order to provide more accurate results. In this paper, we propose a locally-adaptive Optimum-Path Forest classifier together with Markov Random Fields (MRF) that surpasses its naïve version, which was recently presented in the literature. The experimental results over four satellite images demonstrated the proposed approach an outperform previous results, as well as it can perform MRF parameter learning much faster than its former version. | en |
dc.description.affiliation | Department of Computer Science Federal University of São Carlos | |
dc.description.affiliation | Department of Computing São Paulo State University | |
dc.description.affiliationUnesp | Department of Computing São Paulo State University | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | FAPESP: 2012/06472-9 | |
dc.description.sponsorshipId | FAPESP: 2014/16250-9 | |
dc.description.sponsorshipId | FAPESP: 2015/50319-9 | |
dc.format.extent | 994-997 | |
dc.identifier | http://dx.doi.org/10.1109/ISCAS.2016.7527410 | |
dc.identifier.citation | Proceedings - IEEE International Symposium on Circuits and Systems, v. 2016-July, p. 994-997. | |
dc.identifier.doi | 10.1109/ISCAS.2016.7527410 | |
dc.identifier.issn | 0271-4310 | |
dc.identifier.scopus | 2-s2.0-84983453322 | |
dc.identifier.uri | http://hdl.handle.net/11449/234505 | |
dc.language.iso | eng | |
dc.relation.ispartof | Proceedings - IEEE International Symposium on Circuits and Systems | |
dc.source | Scopus | |
dc.subject | Landcover Classification | |
dc.subject | Optimum-Path Forest | |
dc.subject | Pattern Classification | |
dc.title | A block-based Markov random field model estimation for contextual classification using Optimum-Path Forest | en |
dc.type | Trabalho apresentado em evento | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |