Logotipo do repositório
 

Publicação:
A block-based Markov random field model estimation for contextual classification using Optimum-Path Forest

dc.contributor.authorOsaku, Daniel
dc.contributor.authorLevada, Alexandre L.M.
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-05-02T20:23:59Z
dc.date.available2022-05-02T20:23:59Z
dc.date.issued2016-07-29
dc.description.abstractContextual image classification aims at considering the information about nearby samples in the learning process in order to provide more accurate results. In this paper, we propose a locally-adaptive Optimum-Path Forest classifier together with Markov Random Fields (MRF) that surpasses its naïve version, which was recently presented in the literature. The experimental results over four satellite images demonstrated the proposed approach an outperform previous results, as well as it can perform MRF parameter learning much faster than its former version.en
dc.description.affiliationDepartment of Computer Science Federal University of São Carlos
dc.description.affiliationDepartment of Computing São Paulo State University
dc.description.affiliationUnespDepartment of Computing São Paulo State University
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2012/06472-9
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2015/50319-9
dc.format.extent994-997
dc.identifierhttp://dx.doi.org/10.1109/ISCAS.2016.7527410
dc.identifier.citationProceedings - IEEE International Symposium on Circuits and Systems, v. 2016-July, p. 994-997.
dc.identifier.doi10.1109/ISCAS.2016.7527410
dc.identifier.issn0271-4310
dc.identifier.scopus2-s2.0-84983453322
dc.identifier.urihttp://hdl.handle.net/11449/234505
dc.language.isoeng
dc.relation.ispartofProceedings - IEEE International Symposium on Circuits and Systems
dc.sourceScopus
dc.subjectLandcover Classification
dc.subjectOptimum-Path Forest
dc.subjectPattern Classification
dc.titleA block-based Markov random field model estimation for contextual classification using Optimum-Path Foresten
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos