Logotipo do repositório
 

Publicação:
3D Network Traffic Monitoring Based on an Automatic Attack Classifier

dc.contributor.authorColombo Dias, Diego Roberto
dc.contributor.authorFerreira Brega, Jose Remo [UNESP]
dc.contributor.authorTrevelin, Luis Carlos
dc.contributor.authorGnecco, Bruno Barberi
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.authorGuimaraes, Marcelo de Paiva
dc.contributor.authorMurgante, B.
dc.contributor.authorMisra, S.
dc.contributor.authorRocha, AMAC
dc.contributor.authorTorre, C.
dc.contributor.authorRocha, J. G.
dc.contributor.authorFalcao, M. I.
dc.contributor.authorTaniar, D.
dc.contributor.authorApduhan, B. O.
dc.contributor.authorGervasi, O.
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionCorollarium Technol
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2019-10-04T12:29:44Z
dc.date.available2019-10-04T12:29:44Z
dc.date.issued2014-01-01
dc.description.abstractIn the last years, the exponential growth of computer networks has created an incredibly increase of network data traffic. The management becomes a challenging task, requesting a continuous monitoring of the network to detect and diagnose problems, and to fix problems and to optimize performance. Tools, such as Tcpdump and Snort are commonly used as network sniffer, logging and analysis applied on a dedicated host or network segment. They capture the traffic and analyze it for suspicious usage patterns, such as those that occur normally with port scans or Denial-of-service attacks. These tools are very important for the network management, but they do not take advantage of human cognitive capacity of the learning and pattern recognition. To overcome this limitation, this paper aims to present a visual interactive and multiprojection 3D tool with automatic data classification for attack detection.en
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp Sci, BR-13560 Sao Carlos, SP, Brazil
dc.description.affiliationUNESP, Comp Sci Dept, Bauru, SP, Brazil
dc.description.affiliationCorollarium Technol, Sao Paulo, SP, Brazil
dc.description.affiliationOpen Univ Brazil, Fed Univ Sao Paulo Faccamps Mast, Sao Paulo, SP, Brazil
dc.description.affiliationUnespUNESP, Comp Sci Dept, Bauru, SP, Brazil
dc.format.extent342-+
dc.identifier.citationComputational Science And Its Applications - Iccsa 2014, Pt Ii. Berlin: Springer-verlag Berlin, v. 8580, p. 342-+, 2014.
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/11449/184752
dc.identifier.wosWOS:000349532500026
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofComputational Science And Its Applications - Iccsa 2014, Pt Ii
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.title3D Network Traffic Monitoring Based on an Automatic Attack Classifieren
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos