Logotipo do repositório
 

Publicação:
In Silico Analysis of the Biomechanical Stability of Commercially Pure Ti and Ti-15Mo Plates for the Treatment of Mandibular Angle Fracture

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Purpose To investigate the influence of different materials and fixation methods on maximum principal stress (MPS) and displacement in reconstruction plates using in silico 3-dimensional finite element analysis (3D-FEA). Materials and Methods Computer-assisted designed (CAD) models of the mandible and teeth were constructed. Champy and AO/ASIF plates and fixation screws were designed with CAD software. 3D-FEA was performed by image-based CAE software. Maximum and minimum values of biomechanical stability, MPS, and displacement distribution were compared in Champy and AO/ASIF plates made from commercially pure titanium grade 2 (cp-Ti) and a titanium-and-molybdenum (14.47% wt) alloy (Ti-15Mo). Results For plates fixed on a model of a fractured left angle of the mandible, the maximum and minimum values of MPS in the cp-Ti–constructed Champy plate, upper AO/ASIF plate, and lower AO/ASIF plate were 19.5 and 20.3%, 15.2 and 25.3%, and 21.4 and 4.6% lower, respectively, than those for plates made from Ti-15Mo. In the same model, the maximum and minimum values of displacement in the cp-Ti–constructed Champy plate, upper AO/ASIF plate, and lower AO/ASIF plate were 1.6 and 3.8%, 3.1 and 2.7%, and 5.4 and 10.4% higher, respectively, than those for plates made from Ti-15Mo. Conclusions This in silico 3D-FEA shows that Ti-15Mo plates have greater load-bearing capability.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Journal of Oral and Maxillofacial Surgery, v. 75, n. 5, p. 1004.e1-1004.e9, 2017.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação