Logo do repositório
 

Improving the accuracy of the optimum-path forest supervised classifier for large datasets

dc.contributor.authorCastelo-Fernández, César
dc.contributor.authorDe Rezende, Pedro J.
dc.contributor.authorFalcão, Alexandre X.
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:25:25Z
dc.date.available2014-05-27T11:25:25Z
dc.date.issued2010-12-15
dc.description.abstractIn this work, a new approach for supervised pattern recognition is presented which improves the learning algorithm of the Optimum-Path Forest classifier (OPF), centered on detection and elimination of outliers in the training set. Identification of outliers is based on a penalty computed for each sample in the training set from the corresponding number of imputable false positive and false negative classification of samples. This approach enhances the accuracy of OPF while still gaining in classification time, at the expense of a slight increase in training time. © 2010 Springer-Verlag.en
dc.description.affiliationInstitute of Computing State University of Campinas- UNICAMP, Campinas
dc.description.affiliationDepartment of Computing São Paulo State University-UNESP, Baurú
dc.description.affiliationUnespDepartment of Computing São Paulo State University-UNESP, Baurú
dc.format.extent467-475
dc.identifierhttp://dx.doi.org/10.1007/978-3-642-16687-7_62
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6419 LNCS, p. 467-475.
dc.identifier.doi10.1007/978-3-642-16687-7_62
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.lattes9039182932747194
dc.identifier.scopus2-s2.0-78649978375
dc.identifier.urihttp://hdl.handle.net/11449/72224
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.relation.ispartofsjr0,295
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectLearning Algorithm
dc.subjectOptimum-Path Forest Classifier
dc.subjectOutlier Detection
dc.subjectSupervised Classification
dc.subjectClassification time
dc.subjectFalse negatives
dc.subjectFalse positive
dc.subjectForest classifiers
dc.subjectLarge datasets
dc.subjectNew approaches
dc.subjectSupervised classification
dc.subjectSupervised classifiers
dc.subjectSupervised pattern recognition
dc.subjectTraining sets
dc.subjectTraining time
dc.subjectClassification (of information)
dc.subjectClassifiers
dc.subjectComputer vision
dc.subjectData mining
dc.subjectLearning algorithms
dc.titleImproving the accuracy of the optimum-path forest supervised classifier for large datasetsen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights
dspace.entity.typePublication
unesp.author.lattes9039182932747194
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos