Logotipo do repositório
 

Publicação:
Optimizing a medical image registration algorithm based on profiling data for real-time performance

dc.contributor.authorGulo, Carlos A. S. J.
dc.contributor.authorSementille, Antonio C. [UNESP]
dc.contributor.authorTavares, João Manuel R. S.
dc.contributor.institutionResearch Group PIXEL - UNEMAT
dc.contributor.institutionUniversidade do Porto
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T19:46:39Z
dc.date.available2022-04-28T19:46:39Z
dc.date.issued2022-01-01
dc.description.abstractImage registration is a commonly task in medical image analysis. Therefore, a significant number of algorithms have been developed to perform rigid and non-rigid image registration. Particularly, the free-form deformation algorithm is frequently used to carry out non-rigid registration task; however, it is a computationally very intensive algorithm. In this work, we describe an approach based on profiling data to identify potential parts of this algorithm for which parallel implementations can be developed. The proposed approach assesses the efficient of the algorithm by applying performance analysis techniques commonly available in traditional computer operating systems. Hence, this article provides guidelines to support researchers working on medical image processing and analysis to achieve real-time non-rigid image registration applications using common computing systems. According to our experimental findings, significant speedups can be accomplished by parallelizing sequential snippets, i.e., code regions that are executed more than once. For the selected costly functions previously identified in the studied free-form deformation algorithm, the developed parallelization decreased the runtime by up to seven times relatively to the related single thread based implementation. The implementations were developed based on the Open Multi-Processing application programming interface. In conclusion, this study confirms that based on the call graph visualization and detected performance bottlenecks, one can easily find and evaluate snippets which are potential optimization targets in addition to throughput in memory accesses.en
dc.description.affiliationCNPq National Scientific and Technological Development Council Research Group PIXEL - UNEMAT
dc.description.affiliationPrograma Doutoral em Engenharia Informática Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial Faculdade de Engenharia Universidade do Porto
dc.description.affiliationDepartamento de Ciências da Computação Faculdade de Ciências Universidade Estadual Paulista-UNESP
dc.description.affiliationInstituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial Departamento de Engenharia Mecânica Faculdade de Engenharia Universidade do Porto
dc.description.affiliationUnespDepartamento de Ciências da Computação Faculdade de Ciências Universidade Estadual Paulista-UNESP
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent2603-2620
dc.identifierhttp://dx.doi.org/10.1007/s11042-021-11699-x
dc.identifier.citationMultimedia Tools and Applications, v. 81, n. 2, p. 2603-2620, 2022.
dc.identifier.doi10.1007/s11042-021-11699-x
dc.identifier.issn1573-7721
dc.identifier.issn1380-7501
dc.identifier.scopus2-s2.0-85118383046
dc.identifier.urihttp://hdl.handle.net/11449/222782
dc.language.isoeng
dc.relation.ispartofMultimedia Tools and Applications
dc.sourceScopus
dc.subjectMedical image processing and analysis
dc.subjectNon-rigid image registration
dc.subjectPerformance analysis
dc.subjectProfiling tools
dc.titleOptimizing a medical image registration algorithm based on profiling data for real-time performanceen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-5000-497X[1]
unesp.author.orcid0000-0002-4337-514X[2]
unesp.author.orcid0000-0001-7603-6526[3]

Arquivos

Coleções