Logo do repositório

Some classes satisfying the 2-dimensional Jacobian conjecture and a proof of the complex conjecture until degree 104

dc.contributor.authorNguyen, Thuy [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:11:17Z
dc.date.issued2025-01-01
dc.description.abstractWe construct a non-proper set of two variables polynomial maps and study the nowhere vanishing Jacobian condition of the Jacobian conjecture for this set. We obtain some classes of polynomial maps satisfying the 2-dimensional Jacobian conjecture for both real and complex cases. In addition, by Newton polygon technique, we prove that the complex conjecture is true until degree 104, improving Moh boundary (degree 100) since 1983.en
dc.description.affiliationSão Paulo State Univesity (UNESP)
dc.description.affiliationUnespSão Paulo State Univesity (UNESP)
dc.identifierhttp://dx.doi.org/10.2989/16073606.2025.2482655
dc.identifier.citationQuaestiones Mathematicae.
dc.identifier.doi10.2989/16073606.2025.2482655
dc.identifier.issn1727-933X
dc.identifier.issn1607-3606
dc.identifier.scopus2-s2.0-105002037718
dc.identifier.urihttps://hdl.handle.net/11449/308115
dc.language.isoeng
dc.relation.ispartofQuaestiones Mathematicae
dc.sourceScopus
dc.subjectJacobian conjecture
dc.subjectNewton polygon
dc.subjectnon-proper maps
dc.subjectpolynomial maps
dc.titleSome classes satisfying the 2-dimensional Jacobian conjecture and a proof of the complex conjecture until degree 104en
dc.typeArtigopt
dspace.entity.typePublication

Arquivos

Coleções