Logotipo do repositório
 

Publicação:
Some dynamical properties of a classical dissipative bouncing ball model with two nonlinearities

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Some dynamical properties for a bouncing ball model are studied. We show that when dissipation is introduced the structure of the phase space is changed and attractors appear. Increasing the amount of dissipation, the edges of the basins of attraction of an attracting fixed point touch the chaotic attractor. Consequently the chaotic attractor and its basin of attraction are destroyed given place to a transient described by a power law with exponent -2. The parameter-space is also studied and we show that it presents a rich structure with infinite self-similar structures of shrimp-shape. © 2013 Elsevier B.V. All rights reserved.

Descrição

Palavras-chave

Boundary crisis, Chaos, Fermi-map, Basin of attraction, Basins of attraction, Bouncing balls, Chaotic attractors, Dynamical properties, Fixed points, Parameter spaces, Phase spaces, Rich structure, Self-similar, Chaos theory, Physics, Phase space methods

Idioma

Inglês

Como citar

Physica A: Statistical Mechanics and its Applications, v. 392, n. 8, p. 1762-1769, 2013.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação