Logotipo do repositório
 

Publicação:
Objective Bayesian inference for the capability index of the Gamma distribution

dc.contributor.authorAlmeida, Marcello Henrique de [UNESP]
dc.contributor.authorRamos, Pedro Luiz
dc.contributor.authorRao, Gadde Srinivasa
dc.contributor.authorMoala, Fernando Antonio [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniv Dodoma
dc.date.accessioned2021-06-25T12:38:03Z
dc.date.available2021-06-25T12:38:03Z
dc.date.issued2021-02-17
dc.description.abstractThe Gamma distribution has been applied in research in several areas of knowledge, due to its good flexibility and adaptability nature. Process capacity indices like Cpk are widely used when the measurements related to the data follow a normal distribution. This article aims to estimate the Cpk index for nonnormal data using the Gamma distribution. We discuss maximum likelihood estimation and a Bayesian analysis through the Gamma distribution using an objective prior, known as a matching prior that can return Bayesian estimates with good properties for the Cpk. A comparative study is made between classical and Bayesian estimation. The proposed Bayesian approach is considered with the Markov chain Monte Carlo method to generate samples of the posterior distribution. A simulation study is carried out to verify whether the posterior distribution presents good results when compared with the classical approach in terms of the mean relative errors and the mean square errors, which are the two commonly used metrics to evaluate the parameter estimators. Based on the real dataset, Bayesian estimates and credibility intervals for unknown parameters and the prior distribution are achieved to verify if the process is under control.en
dc.description.affiliationState Univ Sao Paulo, Dept Stat, Presidente Prudente, SP, Brazil
dc.description.affiliationUniv Sao Paulo, Inst Math & Comp Sci, Sao Carlos, SP, Brazil
dc.description.affiliationUniv Dodoma, Dept Math & Stat, Dodoma, Tanzania
dc.description.affiliationUnespState Univ Sao Paulo, Dept Stat, Presidente Prudente, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2017/25971-0
dc.format.extent13
dc.identifierhttp://dx.doi.org/10.1002/qre.2854
dc.identifier.citationQuality And Reliability Engineering International. Hoboken: Wiley, 13 p., 2021.
dc.identifier.doi10.1002/qre.2854
dc.identifier.issn0748-8017
dc.identifier.urihttp://hdl.handle.net/11449/210047
dc.identifier.wosWOS:000618764000001
dc.language.isoeng
dc.publisherWiley-Blackwell
dc.relation.ispartofQuality And Reliability Engineering International
dc.sourceWeb of Science
dc.subject<mml
dc.subjectmath altimg=urn
dc.subjectx-wiley
dc.subject07488017
dc.subjectmedia
dc.subjectqre2854
dc.subjectqre2854-math-0001 display=inline><mml
dc.subjectmsub><mml
dc.subjectmi>C</mml
dc.subjectmi><mml
dc.subjectmrow><mml
dc.subjectmi>p</mml
dc.subjectmi>k</mml
dc.subjectmi></mml
dc.subjectmrow></mml
dc.subjectmsub></mml
dc.subjectmath>
dc.subjectmatching prior
dc.subjectobjective Bayesian inference
dc.subjectprocess capacity index
dc.titleObjective Bayesian inference for the capability index of the Gamma distributionen
dc.typeArtigo
dcterms.licensehttp://olabout.wiley.com/WileyCDA/Section/id-406071.html
dcterms.rightsHolderWiley-Blackwell
dspace.entity.typePublication
unesp.author.lattes1621269552366697[4]
unesp.author.orcid0000-0002-2445-0407[4]
unesp.departmentEstatística - FCTpt

Arquivos