Logotipo do repositório
 

Publicação:
MIXUP-BASED DEEP METRIC LEARNING APPROACHES FOR INCOMPLETE SUPERVISION

dc.contributor.authorBuris, Luiz H.
dc.contributor.authorPedronette, Daniel C.G. [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorAlmeida, Jurandy
dc.contributor.authorCarneiro, Gustavo
dc.contributor.authorFaria, Fabio A.
dc.contributor.institutionUniversidade Federal de São Paulo (UNIFESP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionThe University of Adelaide
dc.date.accessioned2023-07-29T16:03:38Z
dc.date.available2023-07-29T16:03:38Z
dc.date.issued2022-01-01
dc.description.abstractDeep learning architectures have achieved promising results in different areas (e.g., medicine, agriculture, and security). However, using those powerful techniques in many real applications becomes challenging due to the large labeled collections required during training. Several works have pursued solutions to overcome it by proposing strategies that can learn more for less, e.g., weakly and semi-supervised learning approaches. As these approaches do not usually address memorization and sensitivity to adversarial examples, this paper presents three deep metric learning approaches combined with Mixup for incomplete-supervision scenarios. We show that some state-of-the-art approaches in metric learning might not work well in such scenarios. Moreover, the proposed approaches outperform most of them in different datasets.en
dc.description.affiliationInstitute of Science and Technology Universidade Federal de São Paulo
dc.description.affiliationDepart. of Statistics Applied Math. and Computing São Paulo State University
dc.description.affiliationDepartment of Computing São Paulo State University
dc.description.affiliationDepartment of Computing Federal University of São Carlos
dc.description.affiliationAustralian Institute for Machine Learning The University of Adelaide
dc.description.affiliationUnespDepart. of Statistics Applied Math. and Computing São Paulo State University
dc.description.affiliationUnespDepartment of Computing São Paulo State University
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2017/25908-6
dc.description.sponsorshipIdFAPESP: 2018/23908-1
dc.description.sponsorshipIdFAPESP: 2019/07665-4
dc.description.sponsorshipIdFAPESP: 2021/01870-5
dc.description.sponsorshipIdCNPq: 308529/2021-9
dc.description.sponsorshipIdCNPq: 314868/2020-8
dc.format.extent2581-2585
dc.identifierhttp://dx.doi.org/10.1109/ICIP46576.2022.9897167
dc.identifier.citationProceedings - International Conference on Image Processing, ICIP, p. 2581-2585.
dc.identifier.doi10.1109/ICIP46576.2022.9897167
dc.identifier.issn1522-4880
dc.identifier.scopus2-s2.0-85146656586
dc.identifier.urihttp://hdl.handle.net/11449/249580
dc.language.isoeng
dc.relation.ispartofProceedings - International Conference on Image Processing, ICIP
dc.sourceScopus
dc.subjectdeep learning
dc.subjectdeep metric learning
dc.subjectincomplete supervision
dc.subjectmixup
dc.titleMIXUP-BASED DEEP METRIC LEARNING APPROACHES FOR INCOMPLETE SUPERVISIONen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos