Publicação: MIXUP-BASED DEEP METRIC LEARNING APPROACHES FOR INCOMPLETE SUPERVISION
dc.contributor.author | Buris, Luiz H. | |
dc.contributor.author | Pedronette, Daniel C.G. [UNESP] | |
dc.contributor.author | Papa, Joao P. [UNESP] | |
dc.contributor.author | Almeida, Jurandy | |
dc.contributor.author | Carneiro, Gustavo | |
dc.contributor.author | Faria, Fabio A. | |
dc.contributor.institution | Universidade Federal de São Paulo (UNIFESP) | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | The University of Adelaide | |
dc.date.accessioned | 2023-07-29T16:03:38Z | |
dc.date.available | 2023-07-29T16:03:38Z | |
dc.date.issued | 2022-01-01 | |
dc.description.abstract | Deep learning architectures have achieved promising results in different areas (e.g., medicine, agriculture, and security). However, using those powerful techniques in many real applications becomes challenging due to the large labeled collections required during training. Several works have pursued solutions to overcome it by proposing strategies that can learn more for less, e.g., weakly and semi-supervised learning approaches. As these approaches do not usually address memorization and sensitivity to adversarial examples, this paper presents three deep metric learning approaches combined with Mixup for incomplete-supervision scenarios. We show that some state-of-the-art approaches in metric learning might not work well in such scenarios. Moreover, the proposed approaches outperform most of them in different datasets. | en |
dc.description.affiliation | Institute of Science and Technology Universidade Federal de São Paulo | |
dc.description.affiliation | Depart. of Statistics Applied Math. and Computing São Paulo State University | |
dc.description.affiliation | Department of Computing São Paulo State University | |
dc.description.affiliation | Department of Computing Federal University of São Carlos | |
dc.description.affiliation | Australian Institute for Machine Learning The University of Adelaide | |
dc.description.affiliationUnesp | Depart. of Statistics Applied Math. and Computing São Paulo State University | |
dc.description.affiliationUnesp | Department of Computing São Paulo State University | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 2017/25908-6 | |
dc.description.sponsorshipId | FAPESP: 2018/23908-1 | |
dc.description.sponsorshipId | FAPESP: 2019/07665-4 | |
dc.description.sponsorshipId | FAPESP: 2021/01870-5 | |
dc.description.sponsorshipId | CNPq: 308529/2021-9 | |
dc.description.sponsorshipId | CNPq: 314868/2020-8 | |
dc.format.extent | 2581-2585 | |
dc.identifier | http://dx.doi.org/10.1109/ICIP46576.2022.9897167 | |
dc.identifier.citation | Proceedings - International Conference on Image Processing, ICIP, p. 2581-2585. | |
dc.identifier.doi | 10.1109/ICIP46576.2022.9897167 | |
dc.identifier.issn | 1522-4880 | |
dc.identifier.scopus | 2-s2.0-85146656586 | |
dc.identifier.uri | http://hdl.handle.net/11449/249580 | |
dc.language.iso | eng | |
dc.relation.ispartof | Proceedings - International Conference on Image Processing, ICIP | |
dc.source | Scopus | |
dc.subject | deep learning | |
dc.subject | deep metric learning | |
dc.subject | incomplete supervision | |
dc.subject | mixup | |
dc.title | MIXUP-BASED DEEP METRIC LEARNING APPROACHES FOR INCOMPLETE SUPERVISION | en |
dc.type | Trabalho apresentado em evento | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |