Logotipo do repositório
 

Publicação:
Optimizing contextual-based optimum-forest classification through swarm intelligence

dc.contributor.authorOsaku, Daniel
dc.contributor.authorNakamura, Rodrigo [UNESP]
dc.contributor.authorPapa, João [UNESP]
dc.contributor.authorLevada, Alexandre
dc.contributor.authorCappabianco, Fábio
dc.contributor.authorFalcão, Alexandre
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2022-04-28T18:59:07Z
dc.date.accessioned2020-12-10T16:54:09Z
dc.date.available2022-04-28T18:59:07Z
dc.date.available2020-12-10T16:54:09Z
dc.date.issued2013-01-01
dc.description.abstractSeveral works have been conducted in order to improve classification problems. However, a considerable amount of them do not consider the contextual information in the learning process, which may help the classification step by providing additional information about the relation between a sample and its neighbourhood. Recently, a previous work have proposed a hybrid approach between Optimum-Path Forest classifier and Markov Random Fields (OPF-MRF) aiming to provide contextual information for this classifier. However, the contextual information was restricted to a spatial/temporal-dependent parameter, which has been empirically chosen in that work. We propose here an improvement of OPF-MRF by modelling the problem of finding such parameter as a swarm-based optimization task, which is carried out Particle Swarm Optimization and Harmony Search. The results have been conducted over the classification of Magnetic Ressonance Images of the brain, and the proposed approach seemed to find close results to the ones obtained by an exhaustive search for this parameter, but much faster for that. © 2013 Springer-Verlag.en
dc.description.affiliationUniv Fed Sao Carlos, Inst Sci & Technol, Sao Carlos, SP, Brazil
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, BR-13560 Sao Carlos, SP, Brazil
dc.description.affiliationInstitute of Science and Technology, Federal University of São Paulo
dc.description.affiliationDepartment of Computing, Federal University of São Carlos
dc.description.affiliationUniv Estadual Paulista, Dept Comp, Sao Paulo, Brazil
dc.description.affiliationDepartment of Computing, UNESP - Univ. Estadual Paulista
dc.description.affiliationUniv Estadual Campinas, Inst Comp, Campinas, SP, Brazil
dc.description.affiliationInstitute of Computing, University of Campinas
dc.description.affiliationUnespUniv Estadual Paulista, Dept Comp, Sao Paulo, Brazil
dc.description.affiliationUnespDepartment of Computing, UNESP - Univ. Estadual Paulista
dc.format.extent203-214
dc.identifierhttp://dx.doi.org/10.1007/978-3-319-02895-8_19
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8192 LNCS, p. 203-214.
dc.identifier.citationAdvanced Concepts For Intelligent Vision Systems, Acivs 2013. Berlin: Springer-verlag Berlin, v. 8192, p. 203-214, 2013.
dc.identifier.doi10.1007/978-3-319-02895-8_19
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-84890861532
dc.identifier.urihttp://hdl.handle.net/11449/243703
dc.identifier.wosWOS:000332973500019
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.relation.ispartofAdvanced Concepts For Intelligent Vision Systems, Acivs 2013
dc.sourceScopus
dc.sourceWeb of Science
dc.subjectMagnetic Resonance Imagesen
dc.subjectOptimum-Path Foresten
dc.subjectMarkov Random Fieldsen
dc.subjectParticle Swarm Optimizationen
dc.subjectHarmony Searchen
dc.titleOptimizing contextual-based optimum-forest classification through swarm intelligenceen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication

Arquivos

Coleções