Logo do repositório
 

A novel approach based on recurrent neural networks applied to nonlinear systems optimization

dc.contributor.authorda Silva, Ivan Nunes
dc.contributor.authordo Amaral, Wagner Caradori
dc.contributor.authorde Arruda, Lucia Valeria
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:27:12Z
dc.date.available2014-05-20T13:27:12Z
dc.date.issued2007-01-01
dc.description.abstractThis paper presents an efficient approach based on recurrent neural network for solving nonlinear optimization. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyze its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network. (c) 2005 Elsevier B.V. All rights reserved.en
dc.description.affiliationSão Paulo State Univ, Dept Elect Engn, UNESP, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespSão Paulo State Univ, Dept Elect Engn, UNESP, BR-17033360 Bauru, SP, Brazil
dc.format.extent78-92
dc.identifierhttp://dx.doi.org/10.1016/j.apm.2005.08.007
dc.identifier.citationApplied Mathematical Modelling. New York: Elsevier B.V., v. 31, n. 1, p. 78-92, 2007.
dc.identifier.doi10.1016/j.apm.2005.08.007
dc.identifier.fileWOS000242415200006.pdf
dc.identifier.issn0307-904X
dc.identifier.urihttp://hdl.handle.net/11449/8885
dc.identifier.wosWOS:000242415200006
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofApplied Mathematical Modelling
dc.relation.ispartofjcr2.617
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectnonlinear optimization problemspt
dc.subjectrecurrent neural networkspt
dc.subjectHopfield networkspt
dc.subjectnonlinear programmingpt
dc.titleA novel approach based on recurrent neural networks applied to nonlinear systems optimizationen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Baurupt
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000242415200006.pdf
Tamanho:
295.54 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: