Logotipo do repositório
 

Publicação:
Evaluating Genetic Algorithms with Different Population Structures on a Lot Sizing and Scheduling Problem

dc.contributor.authorMotta Toledo, Claudio Fabiano
dc.contributor.authorFranga, Paulo Morelato [UNESP]
dc.contributor.authorRosa, Kalianne Almeida
dc.contributor.authorACM
dc.contributor.institutionUniversidade Federal de Lavras (UFLA)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T18:12:48Z
dc.date.available2020-12-10T18:12:48Z
dc.date.issued2008-01-01
dc.description.abstractThis paper studies the use of different population structures in a Genetic Algorithm (GA) applied to lot sizing and scheduling problems. The population approaches are divided into two types: single-population and multi-population. The first type has a non-structured single population. The multi-population type presents non-structured and structured populations organized in binary and ternary trees. Each population approach is tested on lot sizing and scheduling problems found in soft drink companies. These problems have two interdependent levels with decisions concerning raw material storage and soft drink bottling. The challenge is to simultaneously determine the lot sizing and scheduling of raw materials in tanks and products in lines. Computational results are reported allowing determining the better population structure for the set of problem instances evaluated.en
dc.description.affiliationUniv Fed Lavras, Dept Ciencia Comp, BR-37200000 Lavras, MG, Brazil
dc.description.affiliationUniv Estadual Paulista, Dept Mat Estat & Comp, BR-19060900 P Prudente, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Mat Estat & Comp, BR-19060900 P Prudente, SP, Brazil
dc.format.extent1777-+
dc.identifier.citationApplied Computing 2008, Vols 1-3. New York: Assoc Computing Machinery, p. 1777-+, 2008.
dc.identifier.urihttp://hdl.handle.net/11449/195936
dc.identifier.wosWOS:000268392202027
dc.language.isoeng
dc.publisherAssoc Computing Machinery
dc.relation.ispartofApplied Computing 2008, Vols 1-3
dc.sourceWeb of Science
dc.subjectGenetic algorithms
dc.subjectMulti-population
dc.subjectLot sizing
dc.subjectScheduling
dc.subjectSoft drink company
dc.titleEvaluating Genetic Algorithms with Different Population Structures on a Lot Sizing and Scheduling Problemen
dc.typeTrabalho apresentado em evento
dcterms.rightsHolderAssoc Computing Machinery
dspace.entity.typePublication
unesp.departmentEstatística - FCTpt

Arquivos