Grüneisen parameter as an entanglement compass and the breakdown of the Hellmann-Feynman theorem
| dc.contributor.author | Squillante, Lucas [UNESP] | |
| dc.contributor.author | Ricco, Luciano S. | |
| dc.contributor.author | Ukpong, Aniekan Magnus | |
| dc.contributor.author | Lagos-Monaco, Roberto E. [UNESP] | |
| dc.contributor.author | Seridonio, Antonio C. [UNESP] | |
| dc.contributor.author | De Souza, Mariano [UNESP] | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | University of Iceland | |
| dc.contributor.institution | University of KwaZulu-Natal | |
| dc.contributor.institution | National Institute for Theoretical and Computational Sciences (NITheCS) | |
| dc.date.accessioned | 2025-04-29T18:38:08Z | |
| dc.date.issued | 2023-10-01 | |
| dc.description.abstract | The Grüneisen ratio Γ, i.e., the singular part of the ratio of thermal expansion to the specific heat, has been broadly employed to explore both finite T and quantum critical points (QCPs). For a genuine quantum phase transition (QPT), thermal fluctuations are absent and thus the thermodynamic Γ cannot be employed. We propose a quantum analog to Γ that computes entanglement as a function of a tuning parameter λ and show that QPTs take place only for systems in which the ground-state energy depends on λ nonlinearly. Furthermore, we demonstrate the breakdown of the Hellmann-Feynman theorem in the thermodynamic limit at any QCP. We showcase our approach using the quantum one-dimensional Ising model with a transverse field and Kane's quantum computer. The slowing down of the dynamics and thus the creation of massclose to any QCP/QPT is also discussed. | en |
| dc.description.affiliation | Igce - Physics Department São Paulo State University (Unesp), SP | |
| dc.description.affiliation | Science Institute University of Iceland, Dunhagi-3 | |
| dc.description.affiliation | Theoretical and Computational Condensed Matter and Materials Physics Group School of Chemistry and Physics University of KwaZulu-Natal | |
| dc.description.affiliation | National Institute for Theoretical and Computational Sciences (NITheCS), KwaZulu-Natal | |
| dc.description.affiliation | Department of Physics and Chemistry São Paulo State University (Unesp), Ilha Solteira - SP | |
| dc.description.affiliationUnesp | Igce - Physics Department São Paulo State University (Unesp), SP | |
| dc.description.affiliationUnesp | Department of Physics and Chemistry São Paulo State University (Unesp), Ilha Solteira - SP | |
| dc.identifier | http://dx.doi.org/10.1103/PhysRevB.108.L140403 | |
| dc.identifier.citation | Physical Review B, v. 108, n. 14, 2023. | |
| dc.identifier.doi | 10.1103/PhysRevB.108.L140403 | |
| dc.identifier.issn | 2469-9969 | |
| dc.identifier.issn | 2469-9950 | |
| dc.identifier.scopus | 2-s2.0-85175093641 | |
| dc.identifier.uri | https://hdl.handle.net/11449/298780 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Physical Review B | |
| dc.source | Scopus | |
| dc.title | Grüneisen parameter as an entanglement compass and the breakdown of the Hellmann-Feynman theorem | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0003-3433-1353[1] | |
| unesp.author.orcid | 0000-0002-2769-1046[2] | |
| unesp.author.orcid | 0000-0001-6712-7821 0000-0001-6712-7821[3] | |
| unesp.author.orcid | 0000-0002-7182-4424[4] | |
| unesp.author.orcid | 0000-0001-5612-9485[5] | |
| unesp.author.orcid | 0000-0002-2466-3402[6] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteira | pt |
| unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
