Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Canopy defoliation by leaf-cutting ants in eucalyptus plantations inferred by unsupervised machine learning applied to remote sensing

dc.contributor.authorSantos, Alexandre dos
dc.contributor.authorde Lima Santos, Isabel Carolina
dc.contributor.authorCosta, Jeffersoney Garcia
dc.contributor.authorOumar, Zakariyyaa
dc.contributor.authorBueno, Mariane Camargo
dc.contributor.authorMota Filho, Tarcísio Marcos Macedo [UNESP]
dc.contributor.authorZanetti, Ronald
dc.contributor.authorZanuncio, José Cola
dc.contributor.institutionIFMT
dc.contributor.institutionUniversity of Witwatersrand
dc.contributor.institutionKLABIN S/A
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal de Lavras (UFLA)
dc.contributor.institutionUniversidade Federal de Viçosa (UFV)
dc.date.accessioned2023-03-01T20:50:47Z
dc.date.available2023-03-01T20:50:47Z
dc.date.issued2022-01-01
dc.description.abstractDefoliation by leaf-cutting ants alters the physiological processes of plants, and this defoliation can be inferred from satellite imagery used to identify plant injuries. The aim of this study was to evaluate the spectral pattern of defoliation by leaf-cutting ants in eucalyptus plants on a pixel level using unsupervised machine learning techniques applied to remote sensing by satellites. The study was carried out in a eucalyptus plantation in the municipality of Telêmaco Borba, Paraná state, Brazil. The nests of leaf-cutting ants were located and georeferenced. Multispectral images were obtained from the Sentinel-2 (S-2) and planet scope (PS) satellites. The response variables were the RGB-NIR bands and four vegetation indices (VIs). The data obtained from these bands and vegetation indices was separated in an unsupervised method by the k-medoids clustering algorithm and input into a Random Forest (RF) model. The significance of the models was tested with permutational multivariate analysis of variance (PERMANOVA). The k-medoids algorithm classified the spectral response of the RGB-NIR and VIs bands into two main factors of variation in the tree canopy. The models selected were 1200 trees and 6 variables for the S2 satellite (accuracy = 97.74 ± 0.040%) and 900 trees and 5 variables for the PS (accuracy = 97.42 ± 0.026%). The unsupervised machine learning technique, applied to remote sensing, was effective to map defoliation caused by leaf-cutting ants, and this approach can be used in precision agriculture for pest management purposes.en
dc.description.affiliationLaboratório de Fitossanidade (FitLab) Instituto Federal de Mato Grosso IFMT, Mato Grosso
dc.description.affiliationSchool of Geography Archaeology and Environmental Studies University of Witwatersrand
dc.description.affiliationDepartamento de Pesquisa Florestal KLABIN S/A, Avenida Brasil 26
dc.description.affiliationDepartamento de Produção Vegetal Faculdade de Ciências Agronômicas UNESP, Caixa Postal 237, São Paulo
dc.description.affiliationDepartamento de Entomologia Universidade Federal de Lavras, Minas Gerais
dc.description.affiliationDepartamento de Entomologia/BIOAGRO Universidade Federal de Viçosa, Minas Gerais
dc.description.affiliationLaboratório de Fitossanidade (FitLab) Instituto Federal de Mato Grosso IFMT, P.O. Box 244, Mato Grosso
dc.description.affiliationUnespDepartamento de Produção Vegetal Faculdade de Ciências Agronômicas UNESP, Caixa Postal 237, São Paulo
dc.identifierhttp://dx.doi.org/10.1007/s11119-022-09919-x
dc.identifier.citationPrecision Agriculture.
dc.identifier.doi10.1007/s11119-022-09919-x
dc.identifier.issn1573-1618
dc.identifier.issn1385-2256
dc.identifier.scopus2-s2.0-85132283650
dc.identifier.urihttp://hdl.handle.net/11449/241184
dc.language.isoeng
dc.relation.ispartofPrecision Agriculture
dc.sourceScopus
dc.subjectAtta
dc.subjectForest entomology
dc.subjectForest protection
dc.subjectMachine learning
dc.titleCanopy defoliation by leaf-cutting ants in eucalyptus plantations inferred by unsupervised machine learning applied to remote sensingen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0001-8232-6722[1]
unesp.departmentProdução e Melhoramento Vegetal - FCApt

Arquivos