Publicação: GLOBAL DYNAMICS of THE LORENZ SYSTEM WITH INVARIANT ALGEBRAIC SURFACES
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
World Scientific Publ Co Pte Ltd
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
In this paper by using the Poincare compactification of R(3) we describe the global dynamics of the Lorenz system(x) over dot = s(-x + y), (y) over dot = rx - y - xz, (z) over dot = -bz + xy,having some invariant algebraic surfaces. of course ( x, y, z) is an element of R(3) are the state variables and (s, r, b) is an element of R(3) are the parameters. For six sets of the parameter values, the Lorenz system has invariant algebraic surfaces. For these six sets, we provide the global phase portrait of the system in the Poincare ball (i.e. in the compactification of R(3) with the sphere S(2) of the infinity).
Descrição
Palavras-chave
Integrability, Lorenz system, Poincare compactification, dynamics at infinity invariant algebraic surface
Idioma
Inglês
Como citar
International Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 20, n. 10, p. 3137-3155, 2010.