Logotipo do repositório
 

Publicação:
Remote Sensing and Machine Learning on Anomaly Detection at high spectral and temporal dynamics regions in Brazil

dc.contributor.authorGino, Vinícius L.S. [UNESP]
dc.contributor.authorNegri, Rogério G. [UNESP]
dc.contributor.authorSouza, Felipe N. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-07-29T13:13:44Z
dc.date.available2023-07-29T13:13:44Z
dc.date.issued2022-01-01
dc.description.abstractIn climate changes context Remote Sensing tools are widely used and widespread in research. In this sense, Artificial Intelligence rises offering possible improves for environmental monitoring applications using techniques such as Machine Learning for Anomaly Detection applied to Remote Sensing imagery to identify the spatio-temporal changes over the Earth’s surface. This approach is explored in three high dynamic regions in Brazil assessing deforestation, fires and technological disaster areas using One-Class SVM and Isolation Forest methods over MODIS, Landsat and Sentinel images.en
dc.description.affiliationInstituto de Ciência e Tecnologia (ICT) Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), SP
dc.description.affiliationUnespInstituto de Ciência e Tecnologia (ICT) Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), SP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2018/01033-3
dc.description.sponsorshipIdFAPESP: 2020/14664-1
dc.description.sponsorshipIdFAPESP: 2021/01305-6
dc.format.extent99-110
dc.identifier.citationProceedings of the Brazilian Symposium on GeoInformatics, p. 99-110.
dc.identifier.issn2179-4847
dc.identifier.scopus2-s2.0-85159076324
dc.identifier.urihttp://hdl.handle.net/11449/247350
dc.language.isoeng
dc.relation.ispartofProceedings of the Brazilian Symposium on GeoInformatics
dc.sourceScopus
dc.titleRemote Sensing and Machine Learning on Anomaly Detection at high spectral and temporal dynamics regions in Brazilen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campospt

Arquivos