Logotipo do repositório
 

Publicação:
A graph-based approach for contextual image segmentation

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Image segmentation is one of the most important tasks in Image Analysis since it allows locating the relevant regions of the images and discarding irrelevant information. Any mistake during this phase may cause serious problems to the subsequent methods of the image-based systems. The segmentation process is usually very complex since most of the images present some kind of noise. In this work, two techniques are combined to deal with such problem: One derived from the graph theory and other from the anisotropic filtering methods, both emphasizing the use of contextual information in order to classify each pixel in the image with higher precision. Given a noisy grayscale image, an anisotropic diffusion filter is applied in order to smooth the interior regions of the image, eliminating noise without loosing much information of boundary areas. After that, a graph is built based on the pixels of the obtained diffused image, linking adjacent nodes (pixels) and considering the capacity of the edges as a function of the filter properties. Then, after applying the Ford-Fulkerson algorithm, the minimum cut of the graph is found (following the min cut-max flow theorem), segmenting the object of interest. The results show that the proposed approach outperforms the traditional and well-referenced Otsu's method.

Descrição

Palavras-chave

Anisotropic Diffusion, Graph Theory, Image Segmentation, Min Cut-Max Flow

Idioma

Inglês

Como citar

Proceedings - 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images, SIBGRAPI 2016, p. 281-288.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação