Logo do repositório

Quasilinear systems with linearizable characteristic webs

dc.contributor.authorAgafonov, S. I. [UNESP]
dc.contributor.authorFerapontov, E. V.
dc.contributor.authorNovikov, V. S.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionLoughborough
dc.date.accessioned2018-12-11T16:48:24Z
dc.date.available2018-12-11T16:48:24Z
dc.date.issued2017-07-01
dc.description.abstractWe classify quasilinear systems in Riemann invariants whose characteristic webs are linearizable on every solution. Although the linearizability of an individual web is a rather nontrivial differential constraint, the requirement of linearizability of characteristic webs on all solutions imposes simple second-order constraints for the characteristic speeds of the system. It is demonstrated that every such system with n > 3 components can be transformed by a reciprocal transformation to n uncoupled Hopf equations. All our considerations are local.en
dc.description.affiliationDepartamento de Matemática UNESP-Universidade Estadual Paulista
dc.description.affiliationDepartment of Mathematical Sciences Loughborough University Loughborough
dc.description.affiliationUnespDepartamento de Matemática UNESP-Universidade Estadual Paulista
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2014/17812-0
dc.identifierhttp://dx.doi.org/10.1063/1.4994198
dc.identifier.citationJournal of Mathematical Physics, v. 58, n. 7, 2017.
dc.identifier.doi10.1063/1.4994198
dc.identifier.file2-s2.0-85025470745.pdf
dc.identifier.issn0022-2488
dc.identifier.scopus2-s2.0-85025470745
dc.identifier.urihttp://hdl.handle.net/11449/169955
dc.language.isoeng
dc.relation.ispartofJournal of Mathematical Physics
dc.relation.ispartofsjr0,644
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.titleQuasilinear systems with linearizable characteristic websen
dc.typeArtigo
dspace.entity.typePublication

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85025470745.pdf
Tamanho:
720.98 KB
Formato:
Adobe Portable Document Format
Descrição:

Coleções