Logotipo do repositório
 

Publicação:
Development of New Staining Procedures for Diagnosing Cryptosporidium spp. In Fecal Samples by Computerized Image Analysis

dc.contributor.authorLoiola, Saulo Hudson Nery
dc.contributor.authorGalvão, Felipe Lemes
dc.contributor.authorSantos, Bianca Martins Dos
dc.contributor.authorRosa, Stefany Laryssa
dc.contributor.authorSoares, Felipe Augusto
dc.contributor.authorInácio, Sandra Valéria [UNESP]
dc.contributor.authorSuzuki, Celso Tetsuo Nagase
dc.contributor.authorSabadini, Edvaldo
dc.contributor.authorBresciani, Katia Denise Saraiva [UNESP]
dc.contributor.authorFalcão, Alexandre Xavier
dc.contributor.authorGomes, Jancarlo Ferreira
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-05-01T09:47:26Z
dc.date.available2022-05-01T09:47:26Z
dc.date.issued2021-01-01
dc.description.abstractInterpretation errors may still represent a limiting factor for diagnosing Cryptosporidium spp. oocysts with the conventional staining techniques. Humans and machines can interact to solve this problem. We developed a new temporary staining protocol associated with a computer program for the diagnosis of Cryptosporidium spp. oocysts in fecal samples. We established 62 different temporary staining conditions by studying 20 experimental protocols. Cryptosporidium spp. oocysts were concentrated using the Three Fecal Test (TF-Test®) technique and confirmed by the Kinyoun method. Next, we built a bank with 299 images containing oocysts. We used segmentation in superpixels to cluster the patches in the images; then, we filtered the objects based on their typical size. Finally, we applied a convolutional neural network as a classifier. The trichrome modified by Melvin and Brooke, at a concentration use of 25%, was the most efficient dye for use in the computerized diagnosis. The algorithms of this new program showed a positive predictive value of 81.3 and 94.1% sensitivity for the detection of Cryptosporidium spp. oocysts. With the combination of the chosen staining protocol and the precision of the computational algorithm, we improved the Ova and Parasite exam (O&P) by contributing in advance toward the automated diagnosis.en
dc.description.affiliationSchool of Medical Sciences University of Campinas, 126 Tessália Vieira de Camargo St. São Paulo
dc.description.affiliationUniversity of Campinas Institute of Computing, 573, IC-3,5 Saturnino de Brito St. São Paulo
dc.description.affiliationSchool of Veterinary Medicine São Paulo State University (UNESP), 793 Clóvis Pestana St. São Paulo
dc.description.affiliationUniversity of Campinas Institute of Chemistry, 126 Josué de Castro St. São Paulo
dc.description.affiliationUnespSchool of Veterinary Medicine São Paulo State University (UNESP), 793 Clóvis Pestana St. São Paulo
dc.format.extent1-11
dc.identifierhttp://dx.doi.org/10.1017/S1431927621012903
dc.identifier.citationMicroscopy and Microanalysis, p. 1-11.
dc.identifier.doi10.1017/S1431927621012903
dc.identifier.issn1435-8115
dc.identifier.issn1431-9276
dc.identifier.scopus2-s2.0-85117606869
dc.identifier.urihttp://hdl.handle.net/11449/233727
dc.language.isoeng
dc.relation.ispartofMicroscopy and Microanalysis
dc.sourceScopus
dc.subjectCryptosporidium spp.
dc.subjectfeces
dc.subjectmachine learning
dc.subjectoocysts
dc.subjectstain
dc.titleDevelopment of New Staining Procedures for Diagnosing Cryptosporidium spp. In Fecal Samples by Computerized Image Analysisen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária, Araçatubapt
unesp.departmentApoio, Produção e Saúde Animal - FMVApt

Arquivos