Logotipo do repositório
 

Publicação:
Finding the combination of multiple biomarkers to diagnose oral squamous cell carcinoma – A data mining approach

dc.contributor.authorda Costa, Nattane Luíza
dc.contributor.authorde Sá Alves, Mariana [UNESP]
dc.contributor.authorde Sá Rodrigues, Nayara [UNESP]
dc.contributor.authorBandeira, Celso Muller [UNESP]
dc.contributor.authorOliveira Alves, Mônica Ghislaine
dc.contributor.authorMendes, Maria Anita
dc.contributor.authorCesar Alves, Levy Anderson
dc.contributor.authorAlmeida, Janete Dias [UNESP]
dc.contributor.authorBarbosa, Rommel
dc.contributor.institutionScience and Technology
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Mogi das Cruzes
dc.contributor.institutionAnhembi Morumbi University
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Paulista
dc.contributor.institutionUniversidade Municipal de São Caetano do Sul
dc.contributor.institutionUniversidade Federal de Goiás (UFG)
dc.date.accessioned2022-05-01T13:41:29Z
dc.date.available2022-05-01T13:41:29Z
dc.date.issued2022-04-01
dc.description.abstractData mining has proven to be a reliable method to analyze and discover useful knowledge about various diseases, including cancer research. In particular, data mining and machine learning algorithms to study oral squamous cell carcinoma (OSCC), the most common form of oral cancer, is a new area of research. This malignant neoplasm can be studied using saliva samples. Saliva is an important biofluid that must be used to verify potential biomarkers associated with oral cancer. In this study, first, we provide an overview of OSSC diagnoses based on machine learning and salivary metabolites. To our knowledge, this is the first study to apply advanced data mining techniques to diagnose OSCC. Then, we give new results of classification and feature selection algorithms used to identify potential salivary biomarkers of OSCC. To accomplish this task, we used the filter feature selection random forest importance algorithm and a wrapper methodology to evaluate the importance of metabolites obtained from gas chromatography mass-spectrometry (GC-MS) in the context of differentiation of OSCC and the control group. Salivary samples (n = 68) were collected for the control group, and the OSCC group were from patients matched for gender, age, and smoking habit. The classification process occurred based on Random Forest (RF) classification algorithm along with 10-cross validation. The results showed that glucuronic acid, maleic acid, and batyl alcohol can classify the samples with an area under the curve (AUC) of 0.91 versus an AUC of 0.76 using all 51 metabolites analyzed. The methodology used in this study can assist healthcare professionals and be adopted to discover diagnostic biomarkers for other diseases.en
dc.description.affiliationInformatics Nucleo Goiano Federal Institute of Education Science and Technology, Campus Urutaí
dc.description.affiliationDepartment of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University (Unesp)
dc.description.affiliationTechnology Reaearch Center (NPT) Universidade Mogi das Cruzes
dc.description.affiliationSchool of Medicine Anhembi Morumbi University
dc.description.affiliationDempster MS Lab Universidade de São Paulo
dc.description.affiliationSchool of Dentistry Universidade Paulista
dc.description.affiliationSchool of Dentistry Universidade Municipal de São Caetano do Sul
dc.description.affiliationInstituto de Informática Universidade Federal de Goiás
dc.description.affiliationUnespDepartment of Biosciences and Oral Diagnosis Institute of Science and Technology São Paulo State University (Unesp)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2016/08633-0
dc.identifierhttp://dx.doi.org/10.1016/j.compbiomed.2022.105296
dc.identifier.citationComputers in Biology and Medicine, v. 143.
dc.identifier.doi10.1016/j.compbiomed.2022.105296
dc.identifier.issn1879-0534
dc.identifier.issn0010-4825
dc.identifier.scopus2-s2.0-85124169435
dc.identifier.urihttp://hdl.handle.net/11449/234108
dc.language.isoeng
dc.relation.ispartofComputers in Biology and Medicine
dc.sourceScopus
dc.subjectData mining
dc.subjectFeature selection
dc.subjectMachine learning
dc.subjectMetabolites
dc.subjectOral squamous cell carcinoma
dc.subjectSalivary biomarkers
dc.titleFinding the combination of multiple biomarkers to diagnose oral squamous cell carcinoma – A data mining approachen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0001-7310-1150[1]
unesp.author.orcid0000-0003-0339-698X[3]
unesp.author.orcid0000-0002-2078-9286[6]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campospt
unesp.departmentBiociências e Diagnóstico Bucal - ICTpt

Arquivos