Dynamic Parameterization of Metaheuristics Using a Multi-agent System for the Optimization of Electricity Market Participation
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Metaheuristic optimization algorithms are increasingly used to reach near-optimal solutions for complex and large-scale problems that cannot be solved in due time by exact methods. Metaheuristics’ performance is, however, deeply dependent on their effective configuration and fine-tuning to align the algorithm’s search process with the specific characteristics of the problem that is being solved. Although the literature already offers some solutions for automatic algorithm configuration, these are usually either algorithm-specific or problem-specific, thus lacking the capability of being used for diverse metaheuristic models or diverse optimization problems. This work proposes a new approach for the automatic optimization of metaheuristic algorithms’ parameters based on a multi-agent system approach. The proposed model includes an automated fine-tuning process, which is used to optimize a given function in an algorithm- and problem-agnostic manner. Results show that the proposed model is able to achieve better optimization results than standard metaheuristic algorithms, with a negligible increase in the required execution time.
Descrição
Palavras-chave
automatic algorithm configuration, dynamic parameterization, metaheuristic optimization, multi-agent systems, particle swarm optimization
Idioma
Inglês
Citação
Lecture Notes in Networks and Systems, v. 741 LNNS, p. 245-255.




