Logotipo do repositório
 

Publicação:
POST-PROCESSING ASSOCIATION RULES WITH CLUSTERING AND OBJECTIVE MEASURES

dc.contributor.authorCarvalho, Veronica Oliveira de [UNESP]
dc.contributor.authorSantos, Fabiano Fernandes dos
dc.contributor.authorRezende, Solange Oliveira
dc.contributor.authorZhang, R.
dc.contributor.authorCordeiro, J.
dc.contributor.authorLi, X
dc.contributor.authorZhang, Z.
dc.contributor.authorZhang, J.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2020-12-10T22:32:14Z
dc.date.available2020-12-10T22:32:14Z
dc.date.issued2011-01-01
dc.description.abstractThe post-processing of association rules is a difficult task, since a large number of patterns can be obtained. Many approaches have been developed to overcome this problem, as objective measures and clustering, which are respectively used to: (i) highlight the potentially interesting knowledge in domain; (ii) structure the domain, organizing the rules in groups that contain, somehow, similar knowledge. However, objective measures don't reduce nor organize the collection of rules, making the understanding of the domain difficult. On the other hand, clustering doesn't reduce the exploration space nor direct the user to find interesting knowledge, making the search for relevant knowledge not so easy. This work proposes the PAR-COM (Post-processing Association Rules with Clustering and Objective Measures) methodology that, combining clustering and objective measures, reduces the association rule exploration space directing the user to what is potentially interesting. Thereby, PAR-COM minimises the user's effort during the post-processing process.en
dc.description.affiliationUniv Estadual Paulista, Inst Geociencias & Ciencias Exatas, Rio Claro, Brazil
dc.description.affiliationUniv Sao Paulo, Inst Ciencias Matemat & Comp, Sao Carlos, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Inst Geociencias & Ciencias Exatas, Rio Claro, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2010/07879-0
dc.format.extent54-63
dc.identifier.citationIceis 2011: Proceedings Of The 13th International Conference On Enterprise Information Systems, Vol 1. Setubal: Insticc-inst Syst Technologies Information Control & Communication, p. 54-63, 2011.
dc.identifier.urihttp://hdl.handle.net/11449/197458
dc.identifier.wosWOS:000393449200006
dc.language.isoeng
dc.publisherInsticc-inst Syst Technologies Information Control & Communication
dc.relation.ispartofIceis 2011: Proceedings Of The 13th International Conference On Enterprise Information Systems, Vol 1
dc.sourceWeb of Science
dc.subjectAssociation rules
dc.subjectPost-processing
dc.subjectClustering and objective measures
dc.titlePOST-PROCESSING ASSOCIATION RULES WITH CLUSTERING AND OBJECTIVE MEASURESen
dc.typeTrabalho apresentado em evento
dcterms.rightsHolderInsticc-inst Syst Technologies Information Control & Communication
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos