Logotipo do repositório
 

Publicação:
A Novel Siamese-Based Approach for Scene Change Detection With Applications to Obstructed Routes in Hazardous Environments

dc.contributor.authorSantana, Marcos C. S. [UNESP]
dc.contributor.authorPassos, Leandro Aparecido [UNESP]
dc.contributor.authorMoreira, Thierry P. [UNESP]
dc.contributor.authorColombo, Danilo
dc.contributor.authorAlbuquerque, Victor Hugo C. de
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionPetr Brasileiro SA Petrobras
dc.contributor.institutionUniv Fortaleza
dc.date.accessioned2020-12-11T14:35:48Z
dc.date.available2020-12-11T14:35:48Z
dc.date.issued2020-01-01
dc.description.abstractThe demand for automatic scene change detection has massively increased in the last decades due to its importance regarding safety and security issues. Although deep learning techniques have provided significant enhancements in the field, such methods must learn which object belongs to the foreground or background beforehand. In this article, we propose an approach that employs siamese U-Nets to address the task of change detection, such that the model learns to perform semantic segmentation using background reference frames only. Therefore, any object that comes up into the scene defines a change. The experimental results show the robustness of the proposed model over the well-known public dataset CDNet2014. Additionally, we also consider a private dataset called PetrobrasROUTES, which comprises obstruction or abandoned objects in escape routes in hazardous environments. Moreover, the experiments show that the proposed approach is more robust to noise and illumination changes.en
dc.description.affiliationSao Paulo State Univ, Sao Paulo, Brazil
dc.description.affiliationPetr Brasileiro SA Petrobras, Rio De Janeiro, Brazil
dc.description.affiliationUniv Fortaleza, UNIFOR, Fortaleza, Ceara, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Sao Paulo, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipPetrobras
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdFAPESP: 2017/25908-6
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdCNPq: 427968/2018-6
dc.description.sponsorshipIdCNPq: 304315/2017-6
dc.description.sponsorshipIdCNPq: 430274/2018-1
dc.description.sponsorshipIdPetrobras: 2017/00285-6
dc.format.extent44-53
dc.identifierhttp://dx.doi.org/10.1109/MIS.2019.2949984
dc.identifier.citationIeee Intelligent Systems. Los Alamitos: Ieee Computer Soc, v. 35, n. 1, p. 44-53, 2020.
dc.identifier.doi10.1109/MIS.2019.2949984
dc.identifier.issn1541-1672
dc.identifier.urihttp://hdl.handle.net/11449/197720
dc.identifier.wosWOS:000522198900006
dc.language.isoeng
dc.publisherIeee Computer Soc
dc.relation.ispartofIeee Intelligent Systems
dc.sourceWeb of Science
dc.subjectDecoding
dc.subjectImage segmentation
dc.subjectSemantics
dc.subjectTraining data
dc.subjectNeural networks
dc.subjectIntelligent systems
dc.subjectTask analysis
dc.subjectHuman computer interaction
dc.subjectScene Change Detection
dc.subjectSiamese Convolutional Neural Networks
dc.subjectU-Nets
dc.subjectRoute Obstruction Detection
dc.titleA Novel Siamese-Based Approach for Scene Change Detection With Applications to Obstructed Routes in Hazardous Environmentsen
dc.typeArtigo
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee Computer Soc
dspace.entity.typePublication
unesp.author.orcid0000-0003-3886-4309[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos