Logo do repositório

Comparison of UNet and DC-UNet models for an efficient segmentation and visualization of rodent hepatic vascular network from X-ray phase contrast imaging

dc.contributor.authorAlvarez, Matheus [UNESP]
dc.contributor.authorPina, Diana [UNESP]
dc.contributor.authorRositi, Hugo
dc.contributor.authorVacavant, Antoine
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionSigma Clermont Institut Pascal
dc.date.accessioned2025-04-29T20:13:16Z
dc.date.issued2023-01-01
dc.description.abstractThis study proposes deep neural methods and tools for the extraction and visualization of vascular systems, through SR-PCT images (synchrotron radiation X-ray phase-contrast tomography) of murine liver. This is the first time that two deep learning architectures with different parametrizations were applied and compared for vessel segmentation with this imaging modality. Moreover, we propose to apply pre-processing steps (CLAHE, sigmoid and Gaussian filtering) in order to improve the contrast of raw data. We show that the best performance is obtained thanks to a DC-UNet model, learnt with these improved images. With this complete pipeline, we were able to segment and visualize in 3D the complete liver vasculature within a volume of more than 10003 voxels.en
dc.description.affiliationCentre of Medical Physics and Radiological Protection Botucatu Clinical Hospital Unesp
dc.description.affiliationUniversité Clermont Auvergne Cnrs Sigma Clermont Institut Pascal
dc.description.affiliationUnespCentre of Medical Physics and Radiological Protection Botucatu Clinical Hospital Unesp
dc.identifierhttp://dx.doi.org/10.1109/ISBI53787.2023.10230779
dc.identifier.citationProceedings - International Symposium on Biomedical Imaging, v. 2023-April.
dc.identifier.doi10.1109/ISBI53787.2023.10230779
dc.identifier.issn1945-8452
dc.identifier.issn1945-7928
dc.identifier.scopus2-s2.0-85172140411
dc.identifier.urihttps://hdl.handle.net/11449/308630
dc.language.isoeng
dc.relation.ispartofProceedings - International Symposium on Biomedical Imaging
dc.sourceScopus
dc.subjectDeep learning
dc.subjectImage processing
dc.subjectImage segmentation
dc.subjectVessel segmentation
dc.subjectX-ray phase contrast imaging
dc.titleComparison of UNet and DC-UNet models for an efficient segmentation and visualization of rodent hepatic vascular network from X-ray phase contrast imagingen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication

Arquivos

Coleções