Logotipo do repositório
 

Publicação:
Multivariate Bayesian analysis for genetic evaluation and selection of Eucalyptus in multiple environment trials

dc.contributor.authorFerreira, Filipe Manoel
dc.contributor.authorEvangelista, Jeniffer Santana Pinto Coelho
dc.contributor.authorChaves, Saulo Fabricio da Silva
dc.contributor.authorAlves, Rodrigo Silva
dc.contributor.authorSilva, Dandara Bonfim [UNESP]
dc.contributor.authorMalikouski, Renan Garcia
dc.contributor.authorResende, Marcos Deon Vilela
dc.contributor.authorBhering, Leonardo Lopes
dc.contributor.authorSantos, Gleison Augusto
dc.contributor.institutionUniversidade Federal de Viçosa (UFV)
dc.contributor.institutionUniversidade Federal de Lavras (UFLA)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.date.accessioned2023-03-01T20:26:36Z
dc.date.available2023-03-01T20:26:36Z
dc.date.issued2022-01-01
dc.description.abstractForest plantations are strong allies in preserving natural resources, providing social and economic benefits. The plantations carried out in the coming years will be vital to meet the growing demand for forest products. To ensure the continuity of genetic progress and the good results achieved with the improvement of forest species, statistical methods that accurately selects superior genotypes are desirable. Multi-trait multi-environment trials are preferred over single-trait single-environment trials, since they can exploit the covariance between traits and environments, increasing the analysis’s prediction power. The Bayesian multi-trait multi-environments approach (BMTME) combines the cited advantages with the parsimony of Bayesian statistics promoting a more informative data analysis. Thus, the aims of this study were to estimate genetic parameters, evaluate genetic variability, and select eucalyptus clones through BMTME models. To this end, a data set with 215 eucalyptus clones evaluated in four environments for diameter at breast height and Pilodyn penetration was used. The Markov Chain Monte Carlo algorithm was applied to estimate the variance components and genetic parameters and to predict the genotypic values. The Smith-Hazel index was used to simultaneously achieve gains with selection for both traits. The BMTME approach provided high accuracies, being a good strategy to the evaluation of multiple environmental trials of Eucalyptus for breeding purposes.en
dc.description.affiliationUniversidade Federal de Viçosa Departamento de Biologia Geral, MG
dc.description.affiliationUniversidade Federal de Lavras Instituto Nacional de Ciência e Tecnologia do Café, MG
dc.description.affiliationUniversidade Estadual Paulista “Julio de Mesquita Filho” Departamento de Biologia Florestal, SP
dc.description.affiliationEmbrapa Café, MG
dc.description.affiliationUniversidade Federal de Viçosa Departamento de Engenharia Florestal, MG
dc.description.affiliationUnespUniversidade Estadual Paulista “Julio de Mesquita Filho” Departamento de Biologia Florestal, SP
dc.identifierhttp://dx.doi.org/10.1590/1678-4499.20210347
dc.identifier.citationBragantia, v. 81.
dc.identifier.doi10.1590/1678-4499.20210347
dc.identifier.issn1678-4499
dc.identifier.issn0006-8705
dc.identifier.scopus2-s2.0-85135912886
dc.identifier.urihttp://hdl.handle.net/11449/240644
dc.language.isoeng
dc.relation.ispartofBragantia
dc.sourceScopus
dc.subjectEucalyptus spp
dc.subjectforest tree breeding
dc.subjectgenotype × environment interaction
dc.subjectmulti-environment trials
dc.subjectquantitative genetics
dc.titleMultivariate Bayesian analysis for genetic evaluation and selection of Eucalyptus in multiple environment trialsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-7847-8333[1]
unesp.author.orcid0000-0001-8820-0434[2]
unesp.author.orcid0000-0002-0694-1798[3]
unesp.author.orcid0000-0002-3038-6210[4]
unesp.author.orcid0000-0002-8050-8685[5]
unesp.author.orcid0000-0003-0957-4871[6]
unesp.author.orcid0000-0002-3087-3588[7]
unesp.author.orcid0000-0002-6072-0996[8]
unesp.author.orcid0000-0002-0773-810X[9]

Arquivos

Coleções