Temporal Dengue Outbreak Prediction from Climatic Variables using Finite Element Machines for Regression
Carregando...
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Fonte externa
Fonte externa
Resumo
The global burden of dengue, a mosquito-borne viral infection, has alarmingly increased in recent decades. The rise in disease occurrence is mainly attributed to changes in the climate, human ecology, globalization, and demography. In such a scenario, an accurate prediction of a dengue outbreak is essential to reduce the morbidity rate significantly. This paper employs two classes of autoregressive models for dengue forecasting and a recently proposed approach called Finite Element Machine for Regression (FEMaR). It also proposes a variant, namely FEMaR-KD, which allows the exploration of k-approximate nearest neighbors to interpolate data points based on k -neighborhood instead of the whole dataset. Such models are built considering environmental parameters, which denote one of the main determinants for infection occurrence. Finally, the proposed models' performance is assessed over two distinct datasets, considering differing spatial scales and regions. Results show that FEMaR obtained a mean absolute error up to 51% smaller than the autoregressive models considering univariate scenarios, and a root mean squared error up to 63% smaller regarding the univariate models.
Descrição
Palavras-chave
Autoregression, Dengue, Finite Element Machines, Machine Learning, Regression
Idioma
Inglês
Citação
International Conference on Systems, Signals, and Image Processing, v. 2023-June.