Logotipo do repositório
 

Publicação:
Information geometry theory of bifurcations? A covariant formulation

dc.contributor.authorDa Silva, V. B. [UNESP]
dc.contributor.authorVieira, J. P. [UNESP]
dc.contributor.authorLeonel, Edson D. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:40:16Z
dc.date.available2022-04-29T08:40:16Z
dc.date.issued2022-02-01
dc.description.abstractThe conventional local bifurcation theory (CBT) fails to present a complete characterization of the stability and general aspects of complex phenomena. After all, the CBT only explores the behavior of nonlinear dynamical systems in the neighborhood of their fixed points. Thus, this limitation imposes the necessity of non-trivial global techniques and lengthy numerical solutions. In this article, we present an attempt to overcome these problems by including the Fisher information theory in the study of bifurcations. Here, we investigate a Riemannian metrical structure of local and global bifurcations described in the context of dynamical systems. The introduced metric is based on the concept of information distance. We examine five contrasting models in detail: saddle-node, transcritical, supercritical pitchfork, subcritical pitchfork, and homoclinic bifurcations. We found that the metric imposes a curvature scalar R on the parameter space. Also, we discovered that R diverges to infinity while approaching bifurcation points. We demonstrate that the local stability conditions are recovered from the interpretations of the curvature R, while global stability is inferred from the character of the Fisher metric. The results are a clear improvement over those of the conventional theory.en
dc.description.affiliationDepartment of Physics Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Rio Claro
dc.description.affiliationDepartment of Mathematics Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Rio Claro
dc.description.affiliationUnespDepartment of Physics Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Rio Claro
dc.description.affiliationUnespDepartment of Mathematics Universidade Estadual Paulista Júlio de Mesquita Filho Campus de Rio Claro
dc.identifierhttp://dx.doi.org/10.1063/5.0069033
dc.identifier.citationChaos, v. 32, n. 2, 2022.
dc.identifier.doi10.1063/5.0069033
dc.identifier.issn1089-7682
dc.identifier.issn1054-1500
dc.identifier.scopus2-s2.0-85125588605
dc.identifier.urihttp://hdl.handle.net/11449/230489
dc.language.isoeng
dc.relation.ispartofChaos
dc.sourceScopus
dc.titleInformation geometry theory of bifurcations? A covariant formulationen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-3843-5232[1]
unesp.author.orcid0000-0001-6062-2096[2]
unesp.author.orcid0000-0001-8224-3329[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentFísica - IGCEpt
unesp.departmentMatemática - IGCEpt

Arquivos