Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Structural characterization of silver nanoparticles produced by biogenic synthesis using SAXS

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Nanotechnology applied to the agricultural sector has highlighted in recent decades, making important contributions, including systems for pest control as biogenic nanoparticles. These nanoparticles are used to control phytopathogens, demonstrating the need to understand its composition, mechanisms of action and toxicity. Their capping of biomolecules, derived from the organism used in the synthesis, contributes to their stability and biological activity. Ag nanoparticles were produced by the fungus Trichoderma harzianum in aqueous solutions containing silver nitrate as a precursor for the silver nanoparticles. Some of the samples were exposed to the phytopathogenic fungus Sclerotinia sclerotiorum responsible for the white mold. After preparation, a fraction of the samples was submitted to physico-chemical processes to remove organic cap layer on nanoparticles surface formed during the preparation process. In this study we determined the effect of the phytopathogenic fungus and cap removal process in the average radius, radius dispersion, number density of the nanoparticles using small angle X-ray scattering (SAXS), where we considered their almost spherical shape in aqueous solution obtained by the biogenic route. The SAXS data analyses suggest that the presence of the pathogenic fungus results in a diminution of number and total volume of Ag NPs without significant effects on average radius and radius dispersion. Our results also indicate that the physic-chemical process to remove the organic cap surrounding the Ag NPs leads to a decrease in the fraction of the smaller nanoparticles.

Descrição

Palavras-chave

Biogenic silver nanoparticles, SAXS, Sclerotinia sclerotiorum, Trichoderma harzianum

Idioma

Inglês

Citação

Physica B: Condensed Matter, v. 684.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso