Z2-bordism and the Borsuk–Ulam Theorem
Carregando...
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Fontes externas
Fontes externas
Resumo
The purpose of this work is to classify, for given integers m,n≥1, the bordism class of a closed smooth m-manifold Xm with a free smooth involution τ with respect to the validity of the Borsuk–Ulam property that for every continuous map φ: Xm→ Rn there exists a point x∈ Xm such that φ(x) = φ(τ(x)). We will classify a given free Z2-bordism class α according to the three possible cases that (a) all representatives (Xm, τ) of α satisfy the Borsuk–Ulam property; (b) there are representatives (X1m,τ1) and (X2m,τ2) of α such that (X1m,τ1) satisfies the Borsuk–Ulam property but (X2m,τ2) does not; (c) no representative (Xm, τ) of α satisfies the Borsuk–Ulam property.
Descrição
Palavras-chave
55M35, 57R75, Primary 55M20, Secondary 57R85
Idioma
Inglês
Citação
Manuscripta Mathematica, v. 150, n. 3-4, p. 371-381, 2016.




