Logotipo do repositório
 

Publicação:
Computer intensive methods for controlling bias in a generalized species diversity index

dc.contributor.authorButturi-Gomes, Davi [UNESP]
dc.contributor.authorPetrere Junior, Miguel
dc.contributor.authorGiacomini, Henrique C.
dc.contributor.authorDe Marco Junior, Paulo
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniv Santa Cecilia
dc.contributor.institutionUniv Toronto
dc.contributor.institutionUniversidade Federal de Goiás (UFG)
dc.date.accessioned2014-12-03T13:10:51Z
dc.date.available2014-12-03T13:10:51Z
dc.date.issued2014-02-01
dc.description.abstractThe use of diversity indices is a common practice in studies of community ecology. Historically, the main indices were derived by Shannon and Simpson. Currently, these two indices are recognized as part of families of entropy-based indices, which generally include species richness as another particular case. This paper evaluates the statistical properties of one of these families, the Tsallis index, as dependent on four factors: (i) spatial distribution of individuals; (ii) species-abundance distributions; (iii) sampling method and (iv) the estimator. To do so, we carried out computer simulations. The maximum likelihood estimator under all scenarios produced more biased estimates than the two computationally intensive estimation methods (i.e., Jackknife and bootstrap). The Broken-Stick was the species-abundance distribution that led to lowest bias, particularly in the species richness estimation. Intermediate levels of spatial-aggregation of individuals were also related to less biased estimations of diversity. The effect of quadrat size upon the bias of estimation was weak, despite the fact that such sampling method often produces a non-random sample of individuals. On the one hand, the Jackknife method was more accurate than the bootstrap, although both methods have shown poor performances for diversity indices that emphasize species richness. On the other hand, if confidence intervals are needed for individual community samples, the bootstrap is strongly recommended over the Jackknife. (C) 2013 Elsevier Ltd. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista, Inst Biociencias, Dept Bioestat, Programa Posgrad Biometria, Botucatu, SP, Brazil
dc.description.affiliationUniv Fed Sao Carlos UFSCar, PPGDBC, CCTS, BR-18052780 Sorocaba, SP, Brazil
dc.description.affiliationUniv Santa Cecilia, Programa Posgrad Sustentabilidade Ecossistemas Co, BR-11045907 Santos, SP, Brazil
dc.description.affiliationUniv Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3G5, Canada
dc.description.affiliationUniv Fed Goias, Lab Ecol Teor & Sintese, Goiania, Go, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Inst Biociencias, Dept Bioestat, Programa Posgrad Biometria, Botucatu, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCNPq: 553283/2009-0
dc.description.sponsorshipIdCNPq: 135117/2009-7
dc.format.extent90-98
dc.identifierhttp://dx.doi.org/10.1016/j.ecolind.2013.10.004
dc.identifier.citationEcological Indicators. Amsterdam: Elsevier Science Bv, v. 37, p. 90-98, 2014.
dc.identifier.doi10.1016/j.ecolind.2013.10.004
dc.identifier.issn1470-160X
dc.identifier.urihttp://hdl.handle.net/11449/112588
dc.identifier.wosWOS:000329385300010
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofEcological Indicators
dc.relation.ispartofjcr3.983
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectQuadrat samplingen
dc.subjectMonte Carlo simulationsen
dc.subjectResampling methodsen
dc.subjectShannon-Wiener indexen
dc.subjectSimpson indexen
dc.subjectSpecies richnessen
dc.titleComputer intensive methods for controlling bias in a generalized species diversity indexen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.orcid0000-0002-8398-533X[1]
unesp.author.orcid0000-0002-3628-6405[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatupt
unesp.departmentBioestatística - IBBpt

Arquivos