Logotipo do repositório
 

Publicação:
Active consensus-based semi-supervised growing neural gas

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

In this paper, we propose a new active semi-supervised growing neural gas (GNG) model, named Active Consensus-Based Semi-Supervised GNG, or ACSSGNG. This model extends the former CSSGNG model by introducing an active mechanism for querying more representative samples in comparison to a random, or passive, selection. Moreover, as a semi-supervised model, the ACSSGNG takes both labelled and unlabelled samples in the training procedure. In comparison to other adaptations of the GNG to semi-supervised classification, the ACSSGNG does not assign a single scalar label value to each neuron. Instead, a vector containing the representativeness level of each class is associated with each neuron. Here, this information is used to select which sample the specialist might label instead of using a random selection of samples. Computer experiments show that our model can deliver, on average, better classification results than state-of-art semi-supervised algorithms, including the CSSGNG.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9948 LNCS, p. 126-135.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação