Active consensus-based semi-supervised growing neural gas
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Arquivos
Fontes externas
Fontes externas
Resumo
In this paper, we propose a new active semi-supervised growing neural gas (GNG) model, named Active Consensus-Based Semi-Supervised GNG, or ACSSGNG. This model extends the former CSSGNG model by introducing an active mechanism for querying more representative samples in comparison to a random, or passive, selection. Moreover, as a semi-supervised model, the ACSSGNG takes both labelled and unlabelled samples in the training procedure. In comparison to other adaptations of the GNG to semi-supervised classification, the ACSSGNG does not assign a single scalar label value to each neuron. Instead, a vector containing the representativeness level of each class is associated with each neuron. Here, this information is used to select which sample the specialist might label instead of using a random selection of samples. Computer experiments show that our model can deliver, on average, better classification results than state-of-art semi-supervised algorithms, including the CSSGNG.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9948 LNCS, p. 126-135.





