Publicação: Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches
dc.contributor.author | Passos, Leandro A. | |
dc.contributor.author | Rodrigues, Douglas R. | |
dc.contributor.author | Papa, Joao P. [UNESP] | |
dc.contributor.author | IEEE | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2019-10-04T13:42:58Z | |
dc.date.available | 2019-10-04T13:42:58Z | |
dc.date.issued | 2018-01-01 | |
dc.description.abstract | The Deep learning framework has been widely used in different applications from medicine to engineering. However, there is a lack of works that manage to deal with the issue of hyperparameter fine-tuning, since machine learning techniques often require a considerable human effort in this task. In this paper, we propose to fine-tune Deep Boltzmann Machines using meta-heuristic techniques, which do not require the computation of the gradient of the fitness function, that may be insurmountable in high-dimensional optimization spaces. We demonstrate the validity of the proposed approach against Deep Belief Networks concerning binary image reconstruction. | en |
dc.description.affiliation | Univ Fed Sao Carlos, UFSCAR, Dept Comp, Sao Carlos, SP, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, UNESP, Sch Sci, Bauru, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, UNESP, Sch Sci, Bauru, Brazil | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.description.sponsorshipId | CNPq: 307066/2017-7Blz | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 2016/19403-6 | |
dc.format.extent | 419-424 | |
dc.identifier.citation | 2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci). New York: Ieee, p. 419-424, 2018. | |
dc.identifier.uri | http://hdl.handle.net/11449/186246 | |
dc.identifier.wos | WOS:000448144200073 | |
dc.language.iso | eng | |
dc.publisher | Ieee | |
dc.relation.ispartof | 2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci) | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Deep Learning | |
dc.subject | Deep Boltzmann Machines | |
dc.subject | Meta-heuristic Optimization | |
dc.title | Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |