Logotipo do repositório
 

Publicação:
Fine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approaches

dc.contributor.authorPassos, Leandro A.
dc.contributor.authorRodrigues, Douglas R.
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-04T13:42:58Z
dc.date.available2019-10-04T13:42:58Z
dc.date.issued2018-01-01
dc.description.abstractThe Deep learning framework has been widely used in different applications from medicine to engineering. However, there is a lack of works that manage to deal with the issue of hyperparameter fine-tuning, since machine learning techniques often require a considerable human effort in this task. In this paper, we propose to fine-tune Deep Boltzmann Machines using meta-heuristic techniques, which do not require the computation of the gradient of the fitness function, that may be insurmountable in high-dimensional optimization spaces. We demonstrate the validity of the proposed approach against Deep Belief Networks concerning binary image reconstruction.en
dc.description.affiliationUniv Fed Sao Carlos, UFSCAR, Dept Comp, Sao Carlos, SP, Brazil
dc.description.affiliationSao Paulo State Univ, UNESP, Sch Sci, Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ, UNESP, Sch Sci, Bauru, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCNPq: 307066/2017-7Blz
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.format.extent419-424
dc.identifier.citation2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci). New York: Ieee, p. 419-424, 2018.
dc.identifier.urihttp://hdl.handle.net/11449/186246
dc.identifier.wosWOS:000448144200073
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2018 Ieee 12th International Symposium On Applied Computational Intelligence And Informatics (saci)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectDeep Learning
dc.subjectDeep Boltzmann Machines
dc.subjectMeta-heuristic Optimization
dc.titleFine Tuning Deep Boltzmann Machines Through Meta-Heuristic Approachesen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos