Logo do repositório

Extração automática de contornos de telhados usando dados de varredura a laser e campos randômicos de Markov

dc.contributor.authorGalvanin, Edineia Aparecida dos Santos
dc.contributor.authorDal Poz, Aluir Porfírio [UNESP]
dc.contributor.authorDe Souza, Aparecida Doniseti Pires
dc.contributor.institutionUniversidade do Estado de Mato Grosso - UNEMAT
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionPrograma de Pós-Graduação em Ciências Cartográficas
dc.date.accessioned2022-04-29T08:43:45Z
dc.date.available2022-04-29T08:43:45Z
dc.date.issued2008-04-01
dc.description.abstractThis paper proposes a methodology for automatic extraction of building roof contours from a Digital Elevation Model (DEM), which is generated through the regularization of an available laser point cloud. The methodology is based on two steps. First, in order to detect high objects (buildings, trees etc.), the DEM is segmented through a recursive splitting technique and a Bayesian merging technique. The recursive splitting technique uses the quadtree structure for subdividing the DEM into homogeneous regions. In order to minimize the fragmentation, which is commonly observed in the results of the recursive splitting segmentation, a region merging technique based on the Bayesian framework is applied to the previously segmented data. The high object polygons are extracted by using vectorization and polygonization techniques. Second, the building roof contours are identified among all high objects extracted previously. Taking into account some roof properties and some feature measurements (e. g., area, rectangularity, and angles between principal axes of the roofs), an energy function was developed based on the Markov Random Field (MRF) model. The solution of this function is a polygon set corresponding to building roof contours and is found by using a minimization technique, like the Simulated Annealing (SA) algorithm. Experiments carried out with laser scanning DEM's showed that the methodology works properly, as it delivered roofs with approximately 90% shape accuracy and no false positive was verified.en
dc.description.affiliationUniversidade do Estado de Mato Grosso - UNEMAT Departmento de Matemática, Rus A, s/n, 78390-000 Barra do Bugres, MT
dc.description.affiliationUniversidade Estadual Paulista (UNESP) Faculdade de Ciências e Tecnologia, Rua Roberto Simonsen, 305, 19060 - 900 Presidente Prudente, SP
dc.description.affiliationPrograma de Pós-Graduação em Ciências Cartográficas, Rua Roberto Simonsen, 305, 19060 - 900 Presidente Prudente, SP
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP) Faculdade de Ciências e Tecnologia, Rua Roberto Simonsen, 305, 19060 - 900 Presidente Prudente, SP
dc.format.extent221-241
dc.identifier.citationBoletim de Ciencias Geodesicas, v. 14, n. 2, p. 221-241, 2008.
dc.identifier.issn1413-4853
dc.identifier.scopus2-s2.0-49649112733
dc.identifier.urihttp://hdl.handle.net/11449/231125
dc.language.isopor
dc.relation.isnodouble6525*
dc.relation.ispartofBoletim de Ciencias Geodesicas
dc.sourceScopus
dc.subjectAutomatic extraction
dc.subjectBuilding roof contours
dc.subjectDigital elevation model
dc.subjectLaser scanning data
dc.subjectMarkov Random Field
dc.titleExtração automática de contornos de telhados usando dados de varredura a laser e campos randômicos de Markovpt
dc.title.alternativeAutomatic extraction of building roof contours by laser scanning data and Markov Random Fielden
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentCartografia - FCTpt

Arquivos