Logotipo do repositório
 

Publicação:
Towards Sustainable North American Wood Product Value Chains, Part I: Computer Vision Identification of Diffuse Porous Hardwoods

dc.contributor.authorRavindran, Prabu
dc.contributor.authorOwens, Frank C.
dc.contributor.authorWade, Adam C.
dc.contributor.authorShmulsky, Rubin
dc.contributor.authorWiedenhoeft, Alex C.
dc.contributor.institutionUniv Wisconsin
dc.contributor.institutionUS Forest Serv
dc.contributor.institutionMississippi State Univ
dc.contributor.institutionPurdue Univ
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T17:21:29Z
dc.date.available2022-04-28T17:21:29Z
dc.date.issued2022-01-21
dc.description.abstractAvailability of and access to wood identification expertise or technology is a critical component for the design and implementation of practical, enforceable strategies for effective promotion, monitoring and incentivisation of sustainable practices and conservation efforts in the forest products value chain. To address this need in the context of the multi-billion-dollar North American wood products industry 22-class, image-based, deep learning models for the macroscopic identification of North American diffuse porous hardwoods were trained for deployment on the open-source, field-deployable XyloTron platform using transverse surface images of specimens from three different xylaria and evaluated on specimens from a fourth xylarium that did not contribute training data. Analysis of the model performance, in the context of the anatomy of the woods considered, demonstrates immediate readiness of the technology developed herein for field testing in a human-in-the-loop monitoring scenario. Also proposed are strategies for training, evaluating, and advancing the state-of-the-art for developing an expansive, continental scale model for all the North American hardwoods.en
dc.description.affiliationUniv Wisconsin, Dept Bot, Madison, WI 53706 USA
dc.description.affiliationUS Forest Serv, Forest Prod Lab, Ctr Wood Anat Res, USDA, 1 Gifford Pinchot Dr, Madison, WI 53705 USA
dc.description.affiliationMississippi State Univ, Dept Sustainable Bioprod, Starkville, MS USA
dc.description.affiliationPurdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA
dc.description.affiliationUniv Estadual Paulista, Dept Ciencias Biol Bot, Botucatu, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Ciencias Biol Bot, Botucatu, SP, Brazil
dc.format.extent13
dc.identifierhttp://dx.doi.org/10.3389/fpls.2021.758455
dc.identifier.citationFrontiers In Plant Science. Lausanne: Frontiers Media Sa, v. 12, 13 p., 2022.
dc.identifier.doi10.3389/fpls.2021.758455
dc.identifier.issn1664-462X
dc.identifier.urihttp://hdl.handle.net/11449/218529
dc.identifier.wosWOS:000752614400001
dc.language.isoeng
dc.publisherFrontiers Media Sa
dc.relation.ispartofFrontiers In Plant Science
dc.sourceWeb of Science
dc.subjectwood identification
dc.subjectillegal logging and timber trade
dc.subjectXyloTron
dc.subjectcomputer vision
dc.subjectmachine learning
dc.subjectdeep learning
dc.subjectdiffuse porous hardwoods
dc.subjectsustainable wood products
dc.titleTowards Sustainable North American Wood Product Value Chains, Part I: Computer Vision Identification of Diffuse Porous Hardwoodsen
dc.typeArtigo
dcterms.rightsHolderFrontiers Media Sa
dspace.entity.typePublication
unesp.author.orcid0000-0002-7053-8565[5]

Arquivos

Coleções