Logo do repositório

Selection of Interspecific Peanut Arachis hypogaea L. Genotypes for Thrips Resistance Using Multivariate Analysis

dc.contributor.authorPirotta, Melina Zacarelli [UNESP]
dc.contributor.authorMichelotto, Marcos Doniseti
dc.contributor.authorJosé de Godoy, Ignácio
dc.contributor.authorFranco, Claudenir Facincani
dc.contributor.authorda Silva Souza, Jardel [UNESP]
dc.contributor.authorUnêda-Trevisoli, Sandra Helena [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionAgência Paulista de Tecnologia Dos Agronegócios/APTA
dc.contributor.institutionAgronomic Institute of Campinas
dc.contributor.institutionCentro Paula Souza
dc.date.accessioned2025-04-29T20:08:10Z
dc.date.issued2025-01-01
dc.description.abstractThis study leverages multivariate analysis, including principal component analysis (PCA) and cluster analysis, to select peanut genotypes with resistance to thrips and desirable agronomic traits. The focus is on progenies derived from the cross between the cultivar IAC 503 4x and an interspecific synthetic amphidiploid (A. magna x A. cardenasii) 4x. Analyzing F4 generation progenies using Federer’s augmented block scheme with intercalary checks, the study evaluates resistance to thrips based on natural infestation and damage symptoms, alongside agronomic traits indicating proximity to the cultivated variety. The multivariate techniques applied are PCA and hierarchical cluster analysis using Euclidean distance and Ward’s method, and the nonhierarchical K-means method. PCA identifies two principal components explaining 78.39% of the variance, focusing on pod and grain yield, number of pods and grains, number of thrips, and visual symptom scores. This allows for the discrimination of 24 progenies based on crucial agronomic characteristics. Cluster analysis forms nine groups, with selected progenies clustering together, indicating consistency between multivariate analysis methods. These analyses effectively select segregating progenies from initial generations of peanuts, emphasizing traits related to thrips resistance and production components. The agreement between PCA and cluster analysis results highlights the efficiency of these methods in genotype selection for improved pest resistance and agronomic performance, contributing to the sustainability and economic viability of peanut production.en
dc.description.affiliationLaboratory of Biotechnology and Plant Breeding Department of Agricultural Sciences São Paulo State University-UNESP/FCAV
dc.description.affiliationAgência Paulista de Tecnologia Dos Agronegócios/APTA, São Paulo
dc.description.affiliationCenter for Analysis and Technological Research of Grain and Fiber Agribusiness Agronomic Institute of Campinas
dc.description.affiliationFaculdade de Tecnologia de Jaboticabal Centro Paula Souza
dc.description.affiliationUnespLaboratory of Biotechnology and Plant Breeding Department of Agricultural Sciences São Paulo State University-UNESP/FCAV
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCAPES: 0001
dc.identifierhttp://dx.doi.org/10.1155/ioa/6173160
dc.identifier.citationInternational Journal of Agronomy, v. 2025, n. 1, 2025.
dc.identifier.doi10.1155/ioa/6173160
dc.identifier.issn1687-8167
dc.identifier.issn1687-8159
dc.identifier.scopus2-s2.0-105001571643
dc.identifier.urihttps://hdl.handle.net/11449/307017
dc.language.isoeng
dc.relation.ispartofInternational Journal of Agronomy
dc.sourceScopus
dc.subjectArachis hypogaea L.
dc.subjectcluster analysis
dc.subjectEnneothrips enigmaticus
dc.subjectinsect resistance
dc.subjectprincipal components
dc.titleSelection of Interspecific Peanut Arachis hypogaea L. Genotypes for Thrips Resistance Using Multivariate Analysisen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0003-1853-0934[5]

Arquivos

Coleções