Logo do repositório

Impact of stacking sequence on the thermal and electrical properties of Poly (aryl ether ketone)/glassfiber/buckypaper composites

dc.contributor.authorGomes, João Victor P. N. [UNESP]
dc.contributor.authorCosta, Michelle Leali [UNESP]
dc.contributor.authorThomazini, Daniel
dc.contributor.authorde Paula Santos, Luis Felipe [UNESP]
dc.contributor.authorRibeiro, Bruno [UNESP]
dc.contributor.authorBotelho, Edson C. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionInstitute for Technological Research (IPT)
dc.contributor.institutionFederal University of Itajuba (UNIFEI)
dc.date.accessioned2025-04-29T20:15:16Z
dc.date.issued2024-10-15
dc.description.abstractThe current market's imperative demand necessitates the research and development of advanced polymer composites, especially those incorporating nanofillers. Carbon nanotubes, in particular, have attracted significant attention within research and development for their potential in creating multifunctional composites. This study aims to evaluate the impact of incorporating carbon nanotube buckypapers (BP) on the thermal and electrical properties of poly (aryl ether ketone) (PAEK)/glass fiber (GF) composites. The BP was prepared through vacuum filtration and integrated into PAEK/GF composites with varying stacking sequences, followed by hot compression processing. The degradation behavior of the laminates was investigated using thermogravimetric analysis (TGA). The viscoelastic properties, evaluated by dynamic mechanical analysis (DMA), suggested an increase in stiffness with the inclusion of BP in two of the analyzed stacking sequences. Thermal conductivity, measured via the pulse laser method, showed results comparable to the base laminate (0.153 W/m·K). Meanwhile, electrical conductivity, assessed using the four-point probe method in the in-plane direction, revealed semiconductor properties, achieving a mean value of 3.162 S/cm for one of the samples, indicating electrical anisotropy within the multifunctional composite material.en
dc.description.affiliationDepartment of Materials and Technology School of Engineering and Science São Paulo State University (UNESP)
dc.description.affiliationLightweight Structures Laboratory Institute for Technological Research (IPT)
dc.description.affiliationMechanical Engineering Institute. Functional Development Materials Group (GDMaF) Federal University of Itajuba (UNIFEI)
dc.description.affiliationUnespDepartment of Materials and Technology School of Engineering and Science São Paulo State University (UNESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdCNPq: 304876/2020-8
dc.description.sponsorshipIdCNPq: 306576/2020-1
dc.identifierhttp://dx.doi.org/10.1002/app.55996
dc.identifier.citationJournal of Applied Polymer Science, v. 141, n. 39, 2024.
dc.identifier.doi10.1002/app.55996
dc.identifier.issn1097-4628
dc.identifier.issn0021-8995
dc.identifier.scopus2-s2.0-85198698394
dc.identifier.urihttps://hdl.handle.net/11449/309384
dc.language.isoeng
dc.relation.ispartofJournal of Applied Polymer Science
dc.sourceScopus
dc.subjectcomposites
dc.subjectconducting polymers
dc.subjectmicroscopy
dc.subjectnanostructured polymers
dc.subjectthermal properties
dc.titleImpact of stacking sequence on the thermal and electrical properties of Poly (aryl ether ketone)/glassfiber/buckypaper compositesen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-6825-7238[1]
unesp.author.orcid0000-0001-9492-8544[2]
unesp.author.orcid0000-0002-4394-3311[3]
unesp.author.orcid0000-0002-5089-1089[4]
unesp.author.orcid0000-0002-0078-9641[5]
unesp.author.orcid0000-0001-8338-4879[6]

Arquivos

Coleções