Logotipo do repositório
 

Publicação:
An incremental Optimum-Path Forest classifier and its application to non-technical losses identification

dc.contributor.authorIwashita, Adriana Sayuri
dc.contributor.authorRodrigues, Douglas [UNESP]
dc.contributor.authorGastaldello, Danilo Sinkiti [UNESP]
dc.contributor.authorde Souza, Andre Nunes [UNESP]
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-05-01T08:45:01Z
dc.date.available2022-05-01T08:45:01Z
dc.date.issued2021-10-01
dc.description.abstractNon-technical losses stand for the energy consumed but not billed, affecting the energy grid as a whole. Such an issue somehow prevails in developing countries, harming the quality of energy and preventing social programs benefit from tax revenues. Machine learning techniques can help mitigate it by mining information from fraudsters and legal users for further decision-making. In this paper, we deal with a steady increase of dataset size, i.e., the incremental learning problem, which can cope with datasets regularly provided by energy companies, requiring the learner to be updated constantly. Since repeating the entire learning process might be prohibitive, adjusting the model to the new data shows to be a better choice. We propose an incremental Optimum-Path Forest approach with k-nn neighborhood that is considerably more efficient for training than its counterpart version, with experiments validated in general-purpose datasets and also in the context of non-technical losses identification.en
dc.description.affiliationDepartment of Computing Federal University of São Carlos, Rod. Washington Luís, km 235
dc.description.affiliationDepartment of Computing São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01
dc.description.affiliationDepartment of Electrical Engineering São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01
dc.description.affiliationUnespDepartment of Computing São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01
dc.description.affiliationUnespDepartment of Electrical Engineering São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: #2013/07375-0
dc.description.sponsorshipIdFAPESP: #2014/12236-1
dc.description.sponsorshipIdFAPESP: #2017/02286-0
dc.description.sponsorshipIdFAPESP: #2018/21934-5
dc.description.sponsorshipIdFAPESP: #2019/07665-4
dc.description.sponsorshipIdCNPq: #307066/2017-7
dc.description.sponsorshipIdCNPq: #427968/2018-6
dc.identifierhttp://dx.doi.org/10.1016/j.compeleceng.2021.107389
dc.identifier.citationComputers and Electrical Engineering, v. 95.
dc.identifier.doi10.1016/j.compeleceng.2021.107389
dc.identifier.issn0045-7906
dc.identifier.scopus2-s2.0-85114128716
dc.identifier.urihttp://hdl.handle.net/11449/233470
dc.language.isoeng
dc.relation.ispartofComputers and Electrical Engineering
dc.sourceScopus
dc.subjectCommercial losses
dc.subjectIncremental learning
dc.subjectNon-technical losses
dc.subjectOptimum-path forest
dc.titleAn incremental Optimum-Path Forest classifier and its application to non-technical losses identificationen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-6494-7514[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos