Logo do repositório

Investigating the ferroelectric phases of sodium niobate: A computational approach

dc.contributor.authorAlvarenga, Jesus A.M.
dc.contributor.authorLaranjeira, José A.S. [UNESP]
dc.contributor.authorFabris, Guilherme S.L. [UNESP]
dc.contributor.authorSambrano, Julio R. [UNESP]
dc.contributor.authorMoreira, Mario L.
dc.contributor.authorCava, Sergio S.
dc.contributor.authorFerrer, Mateus M.
dc.contributor.institutionUniversidade Federal de Pernambuco (UFPE)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T19:15:23Z
dc.date.issued2025-01-31
dc.description.abstractThis study investigates the ferroelectric phases of NaNbO3 using density functional theory (DFT) simulations. Special attention is given to the antiferroelectric polymorph Pbcm and the purported polar phases with monoclinic P1m1 and orthorhombic P21ma symmetries. The results reveal similarities in the diffraction patterns and Raman spectra of the P1m1 and P21ma models, while the Pbcm model exhibits greater distinctiveness. A comprehensive mechanical analysis was conducted, revealing notable anisotropy in mechanical properties and an unusually negative Poisson's ratio for the R3c symmetry. In terms of ferroelectric properties, only the P1m1, P21ma, and R3c structures exhibit non-zero values for piezoelectric charge constants, indicating ferroelectric behavior. The Pbcm space group results from the stacking of two P21ma layers by a second-order improper rotation, explaining its antiferroelectric behavior. This work significantly contributes to the literature by providing a detailed understanding of the structural, vibrational, and mechanical properties of various NaNbO3 phases, highlighting the distinct ferroelectric and antiferroelectric behaviors.en
dc.description.affiliationAdvanced Crystal Growth and Photonics (CCAF) Federal University of Pelotas (UFPEL), RS
dc.description.affiliationModeling and Molecular Simulation Group São Paulo State University (UNESP) School of Sciences, SP
dc.description.affiliationUnespModeling and Molecular Simulation Group São Paulo State University (UNESP) School of Sciences, SP
dc.description.sponsorshipUniversidade Estadual Paulista
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
dc.description.sponsorshipIdCNPq: 150187/2023-8
dc.description.sponsorshipIdFAPESP: 22/03959-6
dc.description.sponsorshipIdFAPESP: 22/16509-9
dc.description.sponsorshipIdFundação de Amparo à Pesquisa do Estado do Rio Grande do Sul: 23/2551-0000153-5
dc.description.sponsorshipIdCNPq: 307213/2021–8
dc.description.sponsorshipIdCNPq: 309719/2023-2
dc.description.sponsorshipIdCNPq: 314278/2023-0
dc.description.sponsorshipIdCNPq: 406160/2023-6
dc.identifierhttp://dx.doi.org/10.1016/j.commatsci.2024.113532
dc.identifier.citationComputational Materials Science, v. 247.
dc.identifier.doi10.1016/j.commatsci.2024.113532
dc.identifier.issn0927-0256
dc.identifier.scopus2-s2.0-85209662762
dc.identifier.urihttps://hdl.handle.net/11449/302714
dc.language.isoeng
dc.relation.ispartofComputational Materials Science
dc.sourceScopus
dc.subjectFerroelectricity
dc.subjectLead-free
dc.subjectPhase transitions
dc.subjectPiezoelectricity
dc.subjectSodium niobate
dc.titleInvestigating the ferroelectric phases of sodium niobate: A computational approachen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.orcid0000-0002-5217-7145[4]
unesp.author.orcid0000-0002-0484-0192[7]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt

Arquivos