Publicação: Thermally activated exchange narrowing of the Gd3+ ESR fine structure in a single crystal of Ce1-xGdxFe4P12 (x approximate to 0.001) skutterudite
Carregando...
Data
2011-09-09
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Amer Physical Soc
Tipo
Artigo
Direito de acesso
Acesso aberto
Resumo
We report electron spin resonance (ESR) measurements in the Gd3+ doped semiconducting filled skutterudite compound Ce1-xGdxFe4P12 (x approximate to 0.001). As the temperature T varies from T similar or equal to 150 K to T similar or equal to 165 K, the Gd3+ ESR fine and hyperfine structures coalesce into a broad inhomogeneous single resonance. At T similar or equal to 200 K the line narrows and as T increases further, the resonance becomes homogeneous with a thermal broadening of 1.1(2) Oe/K. These results suggest that the origin of these features may be associated with a subtle interdependence of thermally activated mechanisms that combine: (i) an increase with T of the density of activated conduction carriers across the T-dependent semiconducting pseudogap; (ii) the Gd3+ Korringa relaxation process due to an exchange interaction J(fd)S.s between the Gd3+ localized magnetic moments and the thermally activated conduction carriers; and (iii) a relatively weak confining potential of the rare earth ions inside the oversized (Fe2P3)(4) cage, which allows the rare earths to become rattler Einstein oscillators above T approximate to 148 K. We argue that the rattling of the Gd3+ ions, via a motional narrowing mechanism, also contributes to the coalescence of the ESR fine and hyperfine structure.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Physical Review B. College Pk: Amer Physical Soc, v. 84, n. 12, p. 7, 2011.