Logotipo do repositório
 

Publicação:
Artificial neural networks: A novel approach to analysing the nutritional ecology of a blowfly species, Chrysomya megacephala

dc.contributor.authorBianconi, Andre [UNESP]
dc.contributor.authorVon Zuben, Claudio J. [UNESP]
dc.contributor.authorSerapiao, Adriane Beatriz de S. [UNESP]
dc.contributor.authorGovone, Jose S. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2013-09-30T18:50:17Z
dc.date.accessioned2014-05-20T13:56:58Z
dc.date.available2013-09-30T18:50:17Z
dc.date.available2014-05-20T13:56:58Z
dc.date.issued2010-06-09
dc.description.abstractBionomic features of blowflies may be clarified and detailed by the deployment of appropriate modelling techniques such as artificial neural networks, which are mathematical tools widely applied to the resolution of complex biological problems. The principal aim of this work was to use three well-known neural networks, namely Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), and Adaptive Neural Network-Based Fuzzy Inference System (ANFIS), to ascertain whether these tools would be able to outperform a classical statistical method (multiple linear regression) in the prediction of the number of resultant adults (survivors) of experimental populations of Chrysomya megacephala (F.) (Diptera: Calliphoridae), based on initial larval density (number of larvae), amount of available food, and duration of immature stages. The coefficient of determination (R(2)) derived from the RBF was the lowest in the testing subset in relation to the other neural networks, even though its R2 in the training subset exhibited virtually a maximum value. The ANFIS model permitted the achievement of the best testing performance. Hence this model was deemed to be more effective in relation to MLP and RBF for predicting the number of survivors. All three networks outperformed the multiple linear regression, indicating that neural models could be taken as feasible techniques for predicting bionomic variables concerning the nutritional dynamics of blowflies.en
dc.description.affiliationSão Paulo State Univ, UNESP, Inst Biociencias, Dept Bot, BR-13506900 Rio Claro, SP, Brazil
dc.description.affiliationUNESP, IB, Dept Zool, Rio Claro, SP, Brazil
dc.description.affiliationUNESP, IGCE, DEMAC, Dept Estat Matemat Aplicada & Computacao, Rio Claro, SP, Brazil
dc.description.affiliationUnespSão Paulo State Univ, UNESP, Inst Biociencias, Dept Bot, BR-13506900 Rio Claro, SP, Brazil
dc.description.affiliationUnespUNESP, IB, Dept Zool, Rio Claro, SP, Brazil
dc.description.affiliationUnespUNESP, IGCE, DEMAC, Dept Estat Matemat Aplicada & Computacao, Rio Claro, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent18
dc.identifierhttp://www.insectscience.org/10.58/
dc.identifier.citationJournal of Insect Science. Tucson: Univ Arizona, v. 10, p. 18, 2010.
dc.identifier.fileWOS000279671200002.pdf
dc.identifier.issn1536-2442
dc.identifier.lattes7562851016795381
dc.identifier.orcid0000-0002-9622-3254
dc.identifier.urihttp://hdl.handle.net/11449/20318
dc.identifier.wosWOS:000279671200002
dc.language.isoeng
dc.publisherUniv Arizona
dc.relation.ispartofJournal of Insect Science
dc.relation.ispartofjcr1.324
dc.relation.ispartofsjr0,424
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectinsect bionomicsen
dc.subjectlarval densityen
dc.subjectlife-historyen
dc.subjectmass rearingen
dc.titleArtificial neural networks: A novel approach to analysing the nutritional ecology of a blowfly species, Chrysomya megacephalaen
dc.typeArtigo
dcterms.licensehttp://www.insectscience.org/ojs/index.php/jis/about/submissions
dcterms.rightsHolderUniv Arizona
dspace.entity.typePublication
unesp.author.lattes7562851016795381[2]
unesp.author.orcid0000-0002-9622-3254[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claropt
unesp.departmentBotânica - IBpt
unesp.departmentZoologia - IBEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000279671200002.pdf
Tamanho:
1.11 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: