Logo do repositório

The Segment Anything Model (SAM) for remote sensing applications: From zero to one shot

dc.contributor.authorOsco, Lucas Prado
dc.contributor.authorWu, Qiusheng
dc.contributor.authorde Lemos, Eduardo Lopes
dc.contributor.authorGonçalves, Wesley Nunes
dc.contributor.authorRamos, Ana Paula Marques [UNESP]
dc.contributor.authorLi, Jonathan
dc.contributor.authorMarcato, José
dc.contributor.institutionUniversity of Western São Paulo (UNOESTE)
dc.contributor.institutionUniversity of Tennessee (UT)
dc.contributor.institutionUniversidade Federal de Mato Grosso do Sul (UFMS)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversity of Waterloo (UW)
dc.date.accessioned2025-04-29T18:37:31Z
dc.date.issued2023-11-01
dc.description.abstractSegmentation is an essential step for remote sensing image processing. This study aims to advance the application of the Segment Anything Model (SAM), an innovative image segmentation model by Meta AI, in the field of remote sensing image analysis. SAM is known for its exceptional generalization capabilities and zero-shot learning, making it a promising approach to processing aerial and orbital images from diverse geographical contexts. Our exploration involved testing SAM across multi-scale datasets using various input prompts, such as bounding boxes, individual points, and text descriptors. To enhance the model's performance, we implemented a novel automated technique that combines a text-prompt-derived general example with one-shot training. This adjustment resulted in an improvement in accuracy, underscoring SAM's potential for deployment in remote sensing imagery and reducing the need for manual annotation. Despite the limitations, encountered with lower spatial resolution images, SAM exhibits promising adaptability to remote sensing data analysis. We recommend future research to enhance the model's proficiency through integration with supplementary fine-tuning techniques and other networks. Furthermore, we provide the open-source code of our modifications on online repositories, encouraging further and broader adaptations of SAM to the remote sensing domain.en
dc.description.affiliationUniversity of Western São Paulo (UNOESTE), Rod. Raposo Tavares, km 572, Limoeiro
dc.description.affiliationUniversity of Tennessee (UT), 1331 Circle Park Drive
dc.description.affiliationFederal University of Mato Grosso do Sul (UFMS), Av. Costa e Silva-Pioneiros, Cidade Universitária
dc.description.affiliationSão Paulo State University (UNESP), Centro Educacional, R. Roberto Simonsen, 305
dc.description.affiliationUniversity of Waterloo (UW), 200 University Avenue West
dc.description.affiliationUnespSão Paulo State University (UNESP), Centro Educacional, R. Roberto Simonsen, 305
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdCNPq: 305296/2022-1
dc.description.sponsorshipIdCNPq: 308481/2022-4
dc.description.sponsorshipIdCNPq: 310517/2020-6
dc.description.sponsorshipIdCNPq: 405997/2021-3
dc.description.sponsorshipIdCNPq: 433783/2018-4
dc.description.sponsorshipIdFundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul: 71/009.436/2022
dc.identifierhttp://dx.doi.org/10.1016/j.jag.2023.103540
dc.identifier.citationInternational Journal of Applied Earth Observation and Geoinformation, v. 124.
dc.identifier.doi10.1016/j.jag.2023.103540
dc.identifier.issn1872-826X
dc.identifier.issn1569-8432
dc.identifier.scopus2-s2.0-85175525676
dc.identifier.urihttps://hdl.handle.net/11449/298568
dc.language.isoeng
dc.relation.ispartofInternational Journal of Applied Earth Observation and Geoinformation
dc.sourceScopus
dc.subjectArtificial intelligence
dc.subjectImage segmentation
dc.subjectMulti-scale datasets
dc.subjectText-prompt technique
dc.titleThe Segment Anything Model (SAM) for remote sensing applications: From zero to one shoten
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbbcf06b3-c5f9-4a27-ac03-b690202a3b4e
relation.isOrgUnitOfPublication.latestForDiscoverybbcf06b3-c5f9-4a27-ac03-b690202a3b4e
unesp.author.orcid0000-0002-0258-536X[1]
unesp.author.orcid0000-0001-5437-4073[2]
unesp.author.orcid0009-0000-0898-4372[3]
unesp.author.orcid0000-0002-8815-6653[4]
unesp.author.orcid0000-0001-6633-2903[5]
unesp.author.orcid0000-0001-7899-0049[6]
unesp.author.orcid0000-0002-9096-6866[7]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept

Arquivos