The Segment Anything Model (SAM) for remote sensing applications: From zero to one shot
| dc.contributor.author | Osco, Lucas Prado | |
| dc.contributor.author | Wu, Qiusheng | |
| dc.contributor.author | de Lemos, Eduardo Lopes | |
| dc.contributor.author | Gonçalves, Wesley Nunes | |
| dc.contributor.author | Ramos, Ana Paula Marques [UNESP] | |
| dc.contributor.author | Li, Jonathan | |
| dc.contributor.author | Marcato, José | |
| dc.contributor.institution | University of Western São Paulo (UNOESTE) | |
| dc.contributor.institution | University of Tennessee (UT) | |
| dc.contributor.institution | Universidade Federal de Mato Grosso do Sul (UFMS) | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | University of Waterloo (UW) | |
| dc.date.accessioned | 2025-04-29T18:37:31Z | |
| dc.date.issued | 2023-11-01 | |
| dc.description.abstract | Segmentation is an essential step for remote sensing image processing. This study aims to advance the application of the Segment Anything Model (SAM), an innovative image segmentation model by Meta AI, in the field of remote sensing image analysis. SAM is known for its exceptional generalization capabilities and zero-shot learning, making it a promising approach to processing aerial and orbital images from diverse geographical contexts. Our exploration involved testing SAM across multi-scale datasets using various input prompts, such as bounding boxes, individual points, and text descriptors. To enhance the model's performance, we implemented a novel automated technique that combines a text-prompt-derived general example with one-shot training. This adjustment resulted in an improvement in accuracy, underscoring SAM's potential for deployment in remote sensing imagery and reducing the need for manual annotation. Despite the limitations, encountered with lower spatial resolution images, SAM exhibits promising adaptability to remote sensing data analysis. We recommend future research to enhance the model's proficiency through integration with supplementary fine-tuning techniques and other networks. Furthermore, we provide the open-source code of our modifications on online repositories, encouraging further and broader adaptations of SAM to the remote sensing domain. | en |
| dc.description.affiliation | University of Western São Paulo (UNOESTE), Rod. Raposo Tavares, km 572, Limoeiro | |
| dc.description.affiliation | University of Tennessee (UT), 1331 Circle Park Drive | |
| dc.description.affiliation | Federal University of Mato Grosso do Sul (UFMS), Av. Costa e Silva-Pioneiros, Cidade Universitária | |
| dc.description.affiliation | São Paulo State University (UNESP), Centro Educacional, R. Roberto Simonsen, 305 | |
| dc.description.affiliation | University of Waterloo (UW), 200 University Avenue West | |
| dc.description.affiliationUnesp | São Paulo State University (UNESP), Centro Educacional, R. Roberto Simonsen, 305 | |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorship | Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul | |
| dc.description.sponsorshipId | CAPES: 001 | |
| dc.description.sponsorshipId | CNPq: 305296/2022-1 | |
| dc.description.sponsorshipId | CNPq: 308481/2022-4 | |
| dc.description.sponsorshipId | CNPq: 310517/2020-6 | |
| dc.description.sponsorshipId | CNPq: 405997/2021-3 | |
| dc.description.sponsorshipId | CNPq: 433783/2018-4 | |
| dc.description.sponsorshipId | Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul: 71/009.436/2022 | |
| dc.identifier | http://dx.doi.org/10.1016/j.jag.2023.103540 | |
| dc.identifier.citation | International Journal of Applied Earth Observation and Geoinformation, v. 124. | |
| dc.identifier.doi | 10.1016/j.jag.2023.103540 | |
| dc.identifier.issn | 1872-826X | |
| dc.identifier.issn | 1569-8432 | |
| dc.identifier.scopus | 2-s2.0-85175525676 | |
| dc.identifier.uri | https://hdl.handle.net/11449/298568 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | International Journal of Applied Earth Observation and Geoinformation | |
| dc.source | Scopus | |
| dc.subject | Artificial intelligence | |
| dc.subject | Image segmentation | |
| dc.subject | Multi-scale datasets | |
| dc.subject | Text-prompt technique | |
| dc.title | The Segment Anything Model (SAM) for remote sensing applications: From zero to one shot | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | bbcf06b3-c5f9-4a27-ac03-b690202a3b4e | |
| relation.isOrgUnitOfPublication.latestForDiscovery | bbcf06b3-c5f9-4a27-ac03-b690202a3b4e | |
| unesp.author.orcid | 0000-0002-0258-536X[1] | |
| unesp.author.orcid | 0000-0001-5437-4073[2] | |
| unesp.author.orcid | 0009-0000-0898-4372[3] | |
| unesp.author.orcid | 0000-0002-8815-6653[4] | |
| unesp.author.orcid | 0000-0001-6633-2903[5] | |
| unesp.author.orcid | 0000-0001-7899-0049[6] | |
| unesp.author.orcid | 0000-0002-9096-6866[7] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudente | pt |
