Logo do repositório

Unveiling a New 2D Semiconductor: Biphenylene-Based InN

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

The two-dimensional (2D) materials class earned a boost in 2021 with biphenylene synthesis, which is structurally formed by the fusion of four-, six-, and eight-membered carbon rings, usually named 4-6-8-biphenylene network (BPN). This research proposes a detailed study of electronic, structural, dynamic, and mechanical properties to demonstrate the potential of the novel biphenylene-like indium nitride (BPN-InN) via density functional theory and molecular dynamics simulations. The BPN-InN has a direct band gap energy transition of 2.02 eV, making it promising for optoelectronic applications. This structure exhibits maximum and minimum Young modulus of 22.716 and 22.063 N/m, Poisson ratio of 0.018 and −0.008, and Shear modulus of 11.448 and 10.860 N/m, respectively. To understand the BPN-InN behavior when subjected to mechanical deformations, biaxial and uniaxial strains in armchair and zigzag directions from −8 to 8% were applied, achieving a band gap energy modulation of 1.36 eV over tensile deformations. Our findings are expected to motivate both theorists and experimentalists to study and obtain these new 2D inorganic materials that exhibit promising semiconductor properties.

Descrição

Palavras-chave

Idioma

Inglês

Citação

ACS Omega, v. 9, n. 26, p. 28879-28887, 2024.

Itens relacionados

Unidades

Item type:Unidade,
Faculdade de Ciências
FC
Campus: Bauru


Departamentos

Cursos de graduação

Programas de pós-graduação