Logo do repositório

UAV imaging for spectral characterization of Coffee Leaf Miner (Leucoptera coffeella) infestation in the Cerrado Mineiro region

dc.contributor.authorOrlando, Vinicius Silva Werneck [UNESP]
dc.contributor.authorde Lourdes Bueno Trindade Galo, Maria [UNESP]
dc.contributor.authorMartins, George Deroco
dc.contributor.authorLingua, Andrea Maria
dc.contributor.authorAndaló, Vanessa
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionPolitecnico di Torino
dc.date.accessioned2025-04-29T20:16:29Z
dc.date.issued2024-11-04
dc.description.abstractBrazil, the world's largest coffee producer, faces challenges managing the coffee leaf miner (Leucoptera coffeella), a significant pest. This study suggests remote sensing for pest control decisions. Two experimental areas in the Cerrado region of Minas Gerais State were analyzed to spectrally characterize infested plants and estimate the number of mines per plant. Results show the ability to differentiate infested plants with greater reflectance variance in the near infrared at 850nm. The performances of the three machine learning algorithms were compared. Determining the number of mines in the group of most infested plants demonstrated slightly higher precision, achieving an RMSE of 22.69% using the Support Vector Machine algorithm. Conversely, the group of least-infested plants obtained the best result with the Random Forest algorithm, achieving an RMSE of 32.47%. These promising results indicated that CLM can be detected using aerial multispectral imaging data.en
dc.description.affiliationSão Paulo State University (UNESP), São Paulo
dc.description.affiliationFederal University of Uberlândia (UFU), Minas Gerais
dc.description.affiliationDepartment of Environment Land and Infrastructure Engineering Politecnico di Torino
dc.description.affiliationUnespSão Paulo State University (UNESP), São Paulo
dc.format.extent285-291
dc.identifierhttp://dx.doi.org/10.5194/isprs-annals-X-3-2024-285-2024
dc.identifier.citationISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 10, n. 3, p. 285-291, 2024.
dc.identifier.doi10.5194/isprs-annals-X-3-2024-285-2024
dc.identifier.issn2194-9050
dc.identifier.issn2194-9042
dc.identifier.scopus2-s2.0-85212444274
dc.identifier.urihttps://hdl.handle.net/11449/309757
dc.language.isoeng
dc.relation.ispartofISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
dc.sourceScopus
dc.subjectAerial Imaging
dc.subjectInfestation Monitoring
dc.subjectPest Management
dc.subjectSpectral Analysis
dc.subjectSustainable Agriculture
dc.titleUAV imaging for spectral characterization of Coffee Leaf Miner (Leucoptera coffeella) infestation in the Cerrado Mineiro regionen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.author.orcid0000-0003-0847-9864[1]

Arquivos

Coleções