UAV imaging for spectral characterization of Coffee Leaf Miner (Leucoptera coffeella) infestation in the Cerrado Mineiro region
| dc.contributor.author | Orlando, Vinicius Silva Werneck [UNESP] | |
| dc.contributor.author | de Lourdes Bueno Trindade Galo, Maria [UNESP] | |
| dc.contributor.author | Martins, George Deroco | |
| dc.contributor.author | Lingua, Andrea Maria | |
| dc.contributor.author | Andaló, Vanessa | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Universidade Federal de Uberlândia (UFU) | |
| dc.contributor.institution | Politecnico di Torino | |
| dc.date.accessioned | 2025-04-29T20:16:29Z | |
| dc.date.issued | 2024-11-04 | |
| dc.description.abstract | Brazil, the world's largest coffee producer, faces challenges managing the coffee leaf miner (Leucoptera coffeella), a significant pest. This study suggests remote sensing for pest control decisions. Two experimental areas in the Cerrado region of Minas Gerais State were analyzed to spectrally characterize infested plants and estimate the number of mines per plant. Results show the ability to differentiate infested plants with greater reflectance variance in the near infrared at 850nm. The performances of the three machine learning algorithms were compared. Determining the number of mines in the group of most infested plants demonstrated slightly higher precision, achieving an RMSE of 22.69% using the Support Vector Machine algorithm. Conversely, the group of least-infested plants obtained the best result with the Random Forest algorithm, achieving an RMSE of 32.47%. These promising results indicated that CLM can be detected using aerial multispectral imaging data. | en |
| dc.description.affiliation | São Paulo State University (UNESP), São Paulo | |
| dc.description.affiliation | Federal University of Uberlândia (UFU), Minas Gerais | |
| dc.description.affiliation | Department of Environment Land and Infrastructure Engineering Politecnico di Torino | |
| dc.description.affiliationUnesp | São Paulo State University (UNESP), São Paulo | |
| dc.format.extent | 285-291 | |
| dc.identifier | http://dx.doi.org/10.5194/isprs-annals-X-3-2024-285-2024 | |
| dc.identifier.citation | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 10, n. 3, p. 285-291, 2024. | |
| dc.identifier.doi | 10.5194/isprs-annals-X-3-2024-285-2024 | |
| dc.identifier.issn | 2194-9050 | |
| dc.identifier.issn | 2194-9042 | |
| dc.identifier.scopus | 2-s2.0-85212444274 | |
| dc.identifier.uri | https://hdl.handle.net/11449/309757 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | |
| dc.source | Scopus | |
| dc.subject | Aerial Imaging | |
| dc.subject | Infestation Monitoring | |
| dc.subject | Pest Management | |
| dc.subject | Spectral Analysis | |
| dc.subject | Sustainable Agriculture | |
| dc.title | UAV imaging for spectral characterization of Coffee Leaf Miner (Leucoptera coffeella) infestation in the Cerrado Mineiro region | en |
| dc.type | Trabalho apresentado em evento | pt |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0003-0847-9864[1] |
