Logo do repositório

How to proper initialize Gaussian Mixture Models with Optimum-Path Forest

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

In this paper, we proposed a fast and scalable unsupervised Optimum-Path Forest for improving the initialization of Gaussian mixture models. Taking advantage of Optimum-Path Forest attributes such as on-the-fly number of clusters estimation and its intrinsic non-parametric nature, we exploited the k Approximate Nearest Neighbors graph to build its adjacency relation, enabling it not only to initialize the Expectation-Maximization algorithm but to be employed for clustering on large datasets as well. From experiments conducted on eight datasets, the results indicated the proposed approach is able to encode Gaussian parameters more naturally and intuitively compared to other clustering algorithms such as $k -$means. Furthermore, the proposed approach has shown great scalability, making it a viable alternative to traditional Optimum-Path Forest clustering

Descrição

Palavras-chave

Idioma

Inglês

Citação

Proceedings - 2022 35th Conference on Graphics, Patterns, and Images, SIBGRAPI 2022, p. 127-132.

Itens relacionados

Financiadores

Unidades

Item type:Unidade,
Faculdade de Ciências
FC
Campus: Bauru


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso